The Effect of Third Party Implementations on Reproducibility

Balázs Hidasi | Gravity R&D, a Taboola Company | @balazshidasi Ádám Czapp | Gravity R&D, a Taboola Company | @adam_czapp

- Why does reproducibility matter?
 - Science: core of the process
 - Application: which papers should I try?

- Why does reproducibility matter?
 - Science: core of the process
 - Application: which papers should I try?

Offline evaluation

- Imperfect proxy
- Offline metrics

- Why does reproducibility matter?
 - Science: core of the process
 - Application: which papers should I try?

- Why does reproducibility matter?
 - Science: core of the process
 - Application: which papers should I try?

- Why does reproducibility matter?
 - Science: core of the process
 - Application: which papers should I try?

- Why does reproducibility matter?
 - Science: core of the process
 - Application: which papers should I try?

- Why does reproducibility matter?
 - Science: core of the process
 - Application: which papers should I try?

Personal reimplementation

- Use with custom evaluator
- Efficiency (time of experiments)
- Official code not available

Personal reimplementation

- Use with custom evaluator
- Efficiency (time of experiments)
- Official code not available

Production reimplementation

• Efficiency requirements

Language/framework
 requirements

Personal reimplementation

- Use with custom evaluator •
- Efficiency (time of experiments)
- Official code not available

Production reimplementation

Efficiency requirements •

Language/framework • requirements

Public reimplementation

Accessibility Contributing •

Official code not available

Personal reimplementation

- Use with custom evaluator
- Efficiency (time of experiments)
- Official code not available

Production reimplementation

• Efficiency requirements

Language/framework
 requirements

Public reimplementation

- Accessibility
- Contributing
- Official code not available

Benchmarking frameworks

• Use with unified evaluator

- Standardization/benchmarking
- Accessibility

Personal reimplementation

- Use with custom evaluator
- Efficiency (time of experiments)
- Official code not available

Production reimplementation

• Efficiency requirements

Language/framework
 requirements

Public reimplementation

- Accessibility
- Contributing
- Official code not available

Benchmarking frameworks

Use with unified evaluator

- Standardization/benchmarking
- Accessibility

Are reimplementations correct representations of the original?

•

• We chose GRU4Rec, because...

• We chose GRU4Rec, because...

Seminal work of its field

- Started the line of deep learning methods for session-based/sequential recommendations
- Often used as baseline

TITLE	CITED BY	YEAR
Session-based recommendations with recurrent neural networks B Hidasi, A Karatzoglou, L Baltrunas, D Tikk arXiv preprint arXiv:1511.06939	2589	2015
Recurrent neural networks with top-k gains for session-based recommendations B Hidasi, A Karatzoglou Proceedings of the 27th ACM international conference on information and	693	2018

• We chose GRU4Rec, because...

Seminal work of its field

- Started the line of deep learning methods for session-based/sequential recommendations
- Often used as baseline

TITLE	CITED BY	YEAR
Session-based recommendations with recurrent neural networks B Hidasi, A Karatzoglou, L Baltrunas, D Tikk arXiv preprint arXiv:1511.06939	2589	2015
Recurrent neural networks with top-k gains for session-based recommendations B Hidasi, A Karatzoglou Proceedings of the 27th ACM international conference on information and	693	2018

Official public implementation https://github.com/hidasib/GRU4Rec

- Since spring 2016
 - (ICLR publication)
- Still supported today
- Well-known

About

GRU4Rec is the original Theano implementation of the algorithm in "Session-based Recommendations with Recurrent Neural Networks" paper, published at ICLR 2016 and its follow-up "Recurrent Neural Networks with Top-k Gains for Session-based Recommendations". The code is optimized for execution on the GPU.

- 🛱 Readme
- শ্রু View license

-/- Activity

☆ 719 stars
 ⊙ 41 watching

양 222 forks

• We chose GRU4Rec, because...

Seminal work of its field

- Started the line of deep learning methods for session-based/sequential recommendations
- Often used as baseline

TITLE	CITED BY	YEAR
Session-based recommendations with recurrent neural networks B Hidasi, A Karatzoglou, L Baltrunas, D Tikk arXiv preprint arXiv:1511.06939	2589	2015
Recurrent neural networks with top-k gains for session-based recommendations B Hidasi, A Karatzoglou Proceedings of the 27th ACM international conference on information and	693	2018

Official public implementation

- Since spring 2016
 - (ICLR publication)
- Still supported today
- Well-known

About

GRU4Rec is the original Theano implementation of the algorithm in "Session-based Recommendations with Recurrent Neural Networks" paper, published at ICLR 2016 and its follow-up "Recurrent Neural Networks with Top-k Gains for Session-based Recommendations". The code is optimized for execution on the GPU.

- 🛱 Readme
- ▲ View license

-/- Activity

☆ 719 stars
 ⊙ 41 watching

앟 222 forks

Simple algorithm but highly adapted

- Simple architecture
- Custom adaptations to the recommender domain
- Described in detail in the corresponding papers

• We chose GRU4Rec, because...

Seminal work of its field

- Started the line of deep learning methods for session-based/sequential recommendations
- Often used as baseline

TITLE	CITED BY	YEAR
Session-based recommendations with recurrent neural networks B Hidasi, A Karatzoglou, L Baltrunas, D Tikk arXiv preprint arXiv:1511.06939	2589	2015
Recurrent neural networks with top-k gains for session-based recommenda B Hidasi, A Karatzoglou Proceedings of the 27th ACM international conference on information and	ations 693	2018

Official public implementation About https://github.com/hidasib/GRU4Rec GRU4R

- Since spring 2016
 - (ICLR publication)
- Still supported today
- Well-known

GRU4Rec is the original Theano implementation of the algorithm in "Session-based Recommendations with Recurrent Neural Networks" paper, published at ICLR 2016 and its follow-up "Recurrent Neural Networks with Top-k Gains for Session-based Recommendations". The code is optimized for execution on the GPU.

🛱 Readme

ৰা View license বা

-/- Activity

☆ 719 stars
 ⊙ 41 watching

222 forks

Simple algorithm but highly adapted

- Simple architecture
- Custom adaptations to the recommender domain
- Described in detail in the corresponding papers

Implemented in Theano

- Discontinued DL framework (2018)
- Motivation for recoding in more popular frameworks

Reimplementations of GRU4Rec

Checked

- 2 PyTorch implementations
 - o GRU4REC-pytorch
 - Popular reimplementation
 - Published in 2018
 - Last commit in 2021
 - o Torch-GRU4Rec
 - Newer implementation from 2020
- 2 Tensorflow/Keras implementations
 - o GRU4Rec_Tensorflow
 - Popular reimplementation
 - Published in 2017
 - Last commit in 2019
 - KerasGRU4Rec
 - Published in 2018
 - Last meaningful update in 2020
- 2 benchmarking framework implementations
 - o Microsoft Recommenders
 - Large algorithm collection
 - o Recpack
 - Recently released framework

Reimplementations of GRU4Rec

- Checked
 - 2 PyTorch implementations
 - o GRU4REC-pytorch
 - Popular reimplementation
 - Published in 2018
 - Last commit in 2021
 - o Torch-GRU4Rec
 - Newer implementation from 2020
 - 2 Tensorflow/Keras implementations
 - GRU4Rec_Tensorflow
 - Popular reimplementation
 - Published in 2017
 - Last commit in 2019
 - KerasGRU4Rec
 - Published in 2018
 - Last meaningful update in 2020
 - 2 benchmarking framework implementations
 - o Microsoft Recommenders
 - Large algorithm collection
 - o Recpack
 - Recently released framework

Recommender Systems Evaluation Frameworks

A non-complete list of frameworks useful for the evaluation and reproducibility of recommendation algorithms

Here, you can find links to frameworks useful for recommendation algorithms evaluation. Please, feel to contact us in case you want to add more frameworks.

The frameworks are listed alphabetically.

- ClayRS
- Cornac
- DaisyRec
- Elliot
- FuxiCTR

Recommended

by RecSys

2023 CFP

- Fidelity Mab2rec + Fidelity Jurity
- LensKit
- Microsoft Recommenders
- RecBole
- ReChorus

Reimplementations of GRU4Rec

- Checked
 - 2 PyTorch implementations
 - o GRU4REC-pytorch
 - Popular reimplementation
 - Published in 2018
 - Last commit in 2021
 - o Torch-GRU4Rec
 - Newer implementation from 2020
 - 2 Tensorflow/Keras implementations
 - GRU4Rec_Tensorflow
 - Popular reimplementation
 - Published in 2017
 - Last commit in 2019
 - KerasGRU4Rec
 - Published in 2018
 - Last meaningful update in 2020
 - 2 benchmarking framework implementations
 - o Microsoft Recommenders
 - Large algorithm collection
 - o Recpack
 - Recently released framework

- Others (we know of)
 - Discontinued PyTorch reimplementation
 - RecBole implementation
 - o Doesn't even reference the right papers

Recommender Systems Evaluation Frameworks

A non-complete list of frameworks useful for the evaluation and reproducibility of recommendation algorithms

Here, you can find links to frameworks useful for recommendation algorithms evaluation. Please, feel to contact us in case you want to add more frameworks.

The frameworks are listed alphabetically.

- ClayRS
- Cornac
- DaisyRec
- Elliot
- FuxiCTR

Recommended

by RecSys

2023 CFP

- Fidelity Mab2rec + Fidelity Jurity
- LensKit
- Microsoft Recommenders
- RecBole
- ReChorus

• Architecture of GRU4Rec

• Architecture of GRU4Rec

Those who could do it (5/6)

- GRU4REC-pytorch
- Torch-GRU4Rec
- GRU4Rec_Tensorflow
- KerasGRU4Rec
- Recpack

• Architecture of GRU4Rec

Those who could do it (5/6)

- GRU4REC-pytorch
- Torch-GRU4Rec
- GRU4Rec_Tensorflow
- KerasGRU4Rec
- Recpack

Different architecture in MS recommenders

• Architecture of GRU4Rec

Those who could do it (5/6)

- GRU4REC-pytorch
- Torch-GRU4Rec
- GRU4Rec_Tensorflow
- KerasGRU4Rec
- Recpack

Different architecture in MS recommenders

Severe scalability issue

- Number of negative samples is strictly limited during training
- Requires negative sampling during inference
 - Evaluation flaw
- Not able to rank all items during inference

RQ2: Do they have the same features as the original?

- GRU4Rec = GRU *adapted* to the recommendation problem
 - Missing features (see table)
 - Missing hyperparameters
 - o All versions: momentum, logQ
 - Some versions: bpreg, embedding/hidden dropout, sample_alpha, ...

Included
 Missing
 Partial or flawed

GRU4Rec fea	ture	GRU4REC-pytorch	Torch-GRU4Rec	GRU4Rec_Tensorflow	KerasGRU4Rec	Recpack
Session paral	llel mini-batches	\checkmark	\checkmark	\checkmark	\checkmark	#
Negative sampling	Mini-batch	\checkmark	\checkmark	\checkmark	×	#
	Shared extra	×	\checkmark	×	×	#
Loss	Cross-entropy	#	\checkmark	\checkmark	\checkmark	\sim
	BPR-max	#	\checkmark	×	×	\sim
Embedding	No embedding	\checkmark	\checkmark	×	\checkmark	×
	Separate	\checkmark	\checkmark	\checkmark	×	
	Shared	×	×	×	×	×
					a Tab 😕 a com pa	any

RQ3: Do they suffer from implementation errors?

Nature of the error	Basic errors	Inference errors	Minor errors (easy to notice & fix)	Major errors (hard to notice or fix)	Core errors (full rewrite)
Effort to fix	Almost certainly fixed by any user	Potentially fixed by an involved user	Likely fixed by an experienced user	May be fixed by a very thorough user	Most likely NOT fixed by any user
Examples	 Typos/syntax errors Variables on the incorrect device P(dropout) is used as P(keep) Code is not prepared for unseen test items 	- Hidden states are not reset properly	 Large initial accumulator value prevents convergence Differences to the original (learning rate decay, initialization, optimizer) Hard-coded hyperparameters 	 Sampling and softmax are in reverse order Softmax applied twice Hidden states are reset at incorrect times Incorrect BPR-max loss Dropout can be set, but not applied Embedding and hidden dropout uses the same parameter by mistake 	- Sampling and scoring are in reverse order
Number of occurrences					
GRU4REC-pytorch	1	1	0	5	1
Torch-GRU4Rec	1	0	0	0	1
GRU4Rec_Tensorflow	2	0	3	0	0
KerasGRU4Rec	0	0	2	2	0
Recpack	2	0	3	1	1

RQ4: How do missing features & errors affect offline results?

RQ4: How do missing features & errors affect offline results?

RQ4: How do missing features & errors affect offline results?

	Perf. loss via errors	Perf. loss via features	Total perf. loss			
MEDIAN						
GRU4REC-pytorch	-56.34%	-46.14%	-75.73%			
Torch-GRU4Rec	-1.29%	-5.90%	-7.55%			
GRU4Rec_Tensorflow	-80.59%	-47.15%	-89.46%			
KerasGRU4Rec	-9.54%	-11.94%	-21.32%			
Recpack	-21.23%	-8.48%	-30.27%			
MAX						
GRU4REC-pytorch	-99.38%	-63.88%	-99.62%			
Torch-GRU4Rec	-10.46%	-18.92%	-27.24%			
GRU4Rec_Tensorflow	-88.44%	-61.81%	-93.89%			
KerasGRU4Rec	-26.69%	-15.26%	-37.87%			
Recpack	-37.14%	-22.71%	-48.86%			

• Measured on 5 public session-based datasets

- Yoochoose, Rees46, Coveo, Retailrocket, Diginetica
- Next item prediction (strict)
- Recall & MRR

RQ5: Training time comparisons

- 00B versions vs. feature complete official versions
- Reimplementations are generally slow
- KerasGRU4Rec and Recpack versions scale badly (no sampling)
- Largest slowdown factor: 335.87x

Epoch time (cross-entropy, best hyperparams), Rees46 dataset

Official PyTorch version
Official Tensorflow version

What does this mean?

- Final tally
 - MS Recommender's version is GRU4Rec in name only and deeply flawed
 - Other versions miss at least one important feature of the original
 - All versions have performance decreasing bugs
 - Two implementations scale poorly
- Potentially a lot of research from the last 6-7 years used flawed baseline(s)
 - Hard to tell: no indication of the implementation used
 - Results might be invalidated
- Probably GRU4Rec is not the only algorithm affected
 - It has a public version to base reimplementations on, yet they are still flawed
 - Other well-known baselines should be checked
- Discussions
 - Responsibility
 - Trust in the tools we use
 - How to correct affected work?

If your research used a flawed version

- Rerun experiments with official code
- Extend your work with the results

If your research used a flawed version

- Rerun experiments with official code
- Extend your work with the results

If you want to help

Check reimplementations of other popular baselines

If your research used a flawed version

- Rerun experiments with official code
- Extend your work with the results

If you want to help

Check reimplementations of other popular baselines

As an author

- Always state the implementation you use for every baseline
 - Including link, optionally commit hash
- Use official code if possible

If your research used a flawed version

- Rerun experiments with official code
- Extend your work with the results

If you want to help

 Check reimplementations of other popular baselines

As an author

- Always state the implementation you use for every baseline
 - Including link, optionally commit hash
- Use official code if possible

If you reimplement an algorithm

 Validate your version against the original before using or releasing it

- Compare metrics achieved on multiple datasets under multiple hyperparameter settings
- Compare recommendation lists
- Check if your version has every feature/setting
- Describe the validation process and its results in the README
- Consider if any future change to the original code (e.g. bugfix) should be added to your version as well
 - If implementations diverge due to the original changing, state it clearly

If your research used a flawed version

- Rerun experiments with official code
- Extend your work with the results

If you want to help

- Check reimplementations of other popular Level
 baselines

As an author

- Always state the implementation you use for every baseline
 - Including link, optionally commit hash
- Use official code if possible

As maintainer of a benchmarking framework

- Same as reimplementing any algorithm
- + validate every reimplementation submitted by contributors

If you reimplement an algorithm

 Validate your version against the original before using or releasing it

- Compare metrics achieved on multiple datasets under multiple hyperparameter settings
- Compare recommendation lists
- Check if your version has every feature/setting
- Describe the validation process and its results in the README
- Consider if any future change to the original code (e.g. bugfix) should be added to your version as well
 - If implementations diverge due to the original changing, state it clearly

The wider picture (towards standardized benchmarking)

- State of RecSys benchmarking:
 - Little has changed in the last decade
 - Focus is on baseline reimplementations
 - Collection of algorithms
 - Evaluation is somewhat neglected
 - Incorrect assumptions:
 - One/few size fits all
 - Single correct evaluation setup

The wider picture (towards standardized benchmarking)

- State of RecSys benchmarking:
 - Little has changed in the last decade
 - Focus is on baseline reimplementations
 - Collection of algorithms
 - Evaluation is somewhat neglected
 - Incorrect assumptions:
 - One/few size fits all
 - Single correct evaluation setup

- Towards standardized benchmarking
 - Collect popular recommendation tasks
 - E.g. CTR prediction, session-based recommendation, user-based recommendation, warm/cold-start versions, reoccurrence prediction, etc.)
 - Evaluation stems from the tasks:
 - o agree on offline evaluation setups
 - o datasets (and their preprocessing)
 - o for each task
 - Focus on the evaluation code of these setups
 - o including dataset & preprocessing
 - Provide simple interfaces for evaluating external algorithms
 - Authors then can use the framework during research
 - Only once everything is ready, add some of the most well-known baselines

Thanks for your attention!

