
The Effect of Third Party
Implementations on Reproducibility

Balázs Hidasi | Gravity R&D, a Taboola Company | @balazshidasi

Ádám Czapp | Gravity R&D, a Taboola Company | @adam_czapp

Challenges of comparing the performance of algorithms

• Why does reproducibility matter?

▪ Science: core of the process

▪ Application: which papers should I try?

Challenges of comparing the performance of algorithms

• Why does reproducibility matter?

▪ Science: core of the process

▪ Application: which papers should I try?

Offline evaluation

• Imperfect proxy

• Offline metrics

Challenges of comparing the performance of algorithms

• Why does reproducibility matter?

▪ Science: core of the process

▪ Application: which papers should I try?

Online A/B test

• On business KPIs

• Not reproducible

Offline evaluation

• Imperfect proxy

• Offline metrics

Challenges of comparing the performance of algorithms

• Why does reproducibility matter?

▪ Science: core of the process

▪ Application: which papers should I try?

Online A/B test

• On business KPIs

• Not reproducible

Offline evaluation

• Imperfect proxy

• Offline metrics

Goal of the

recommender

Business goals

& metrics

Chain of approximation

Challenges of comparing the performance of algorithms

• Why does reproducibility matter?

▪ Science: core of the process

▪ Application: which papers should I try?

Online A/B test

• On business KPIs

• Not reproducible

Offline evaluation

• Imperfect proxy

• Offline metrics

Goal of the

recommender

Business goals

& metrics

A/B test setup

• Splitting

• Stopping

• Independence

• …

Evaluation setup

• Best setup &

metric for task

• Dataset

• Preprocessing

• Splitting

• Measuring

Chain of approximation

Check out our

poster on

evaluation flaws

tomorrow!

Challenges of comparing the performance of algorithms

• Why does reproducibility matter?

▪ Science: core of the process

▪ Application: which papers should I try?

Online A/B test

• On business KPIs

• Not reproducible

Offline evaluation

• Imperfect proxy

• Offline metrics

Goal of the

recommender

Business goals

& metrics

A/B test setup

• Splitting

• Stopping

• Independence

• …

Evaluation setup

• Best setup &

metric for task

• Dataset

• Preprocessing

• Splitting

• Measuring

Hyperparameter

optimization

Chain of approximation

Check out our

poster on

evaluation flaws

tomorrow!

Challenges of comparing the performance of algorithms

• Why does reproducibility matter?

▪ Science: core of the process

▪ Application: which papers should I try?

Online A/B test

• On business KPIs

• Not reproducible

Offline evaluation

• Imperfect proxy

• Offline metrics

Goal of the

recommender

Business goals

& metrics

A/B test setup

• Splitting

• Stopping

• Independence

• …

Evaluation setup

• Best setup &

metric for task

• Dataset

• Preprocessing

• Splitting

• Measuring

Hyperparameter

optimization

Algorithm

(re)implementation

Chain of approximation

Check out our

poster on

evaluation flaws

tomorrow!

Why are algorithms reimplemented?

Why are algorithms reimplemented?

Personal reimplementation

• Use with custom evaluator

• Efficiency (time of experiments)

• Official code not available

Why are algorithms reimplemented?

Personal reimplementation

• Use with custom evaluator

• Efficiency (time of experiments)

• Official code not available

Production reimplementation

• Efficiency requirements

• Language/framework
requirements

Why are algorithms reimplemented?

Personal reimplementation

• Use with custom evaluator

• Efficiency (time of experiments)

• Official code not available

Production reimplementation

• Efficiency requirements

• Language/framework
requirements

Public reimplementation

• Accessibility

• Contributing

• Official code not available

Why are algorithms reimplemented?

Personal reimplementation

• Use with custom evaluator

• Efficiency (time of experiments)

• Official code not available

Production reimplementation

• Efficiency requirements

• Language/framework
requirements

Public reimplementation

• Accessibility

• Contributing

• Official code not available

Benchmarking frameworks

• Use with unified evaluator

• Standardization/benchmarking

• Accessibility

Why are algorithms reimplemented?

Are reimplementations correct representations of the original?

Personal reimplementation

• Use with custom evaluator

• Efficiency (time of experiments)

• Official code not available

Production reimplementation

• Efficiency requirements

• Language/framework
requirements

Public reimplementation

• Accessibility

• Contributing

• Official code not available

Benchmarking frameworks

• Use with unified evaluator

• Standardization/benchmarking

• Accessibility

Comparing reimplementations of an algorithm to the original

• We chose GRU4Rec, because…

Comparing reimplementations of an algorithm to the original

• We chose GRU4Rec, because…

Seminal work of its field

• Started the line of deep learning methods for

session-based/sequential recommendations

• Often used as baseline

Comparing reimplementations of an algorithm to the original

• We chose GRU4Rec, because…

Seminal work of its field

• Started the line of deep learning methods for

session-based/sequential recommendations

• Often used as baseline

Official public implementation
https://github.com/hidasib/GRU4Rec

• Since spring 2016

• (ICLR publication)

• Still supported today

• Well-known

https://github.com/hidasib/GRU4Rec

Comparing reimplementations of an algorithm to the original

• We chose GRU4Rec, because…

Seminal work of its field

• Started the line of deep learning methods for

session-based/sequential recommendations

• Often used as baseline

Official public implementation
https://github.com/hidasib/GRU4Rec

• Since spring 2016

• (ICLR publication)

• Still supported today

• Well-known

Simple algorithm but highly adapted

• Simple architecture

• Custom adaptations to the recommender domain

• Described in detail in the corresponding papers

https://github.com/hidasib/GRU4Rec

Comparing reimplementations of an algorithm to the original

• We chose GRU4Rec, because…

Seminal work of its field

• Started the line of deep learning methods for

session-based/sequential recommendations

• Often used as baseline

Official public implementation
https://github.com/hidasib/GRU4Rec

• Since spring 2016

• (ICLR publication)

• Still supported today

• Well-known

Implemented in Theano

• Discontinued DL framework (2018)

• Motivation for recoding in more popular

frameworks

Simple algorithm but highly adapted

• Simple architecture

• Custom adaptations to the recommender domain

• Described in detail in the corresponding papers

https://github.com/hidasib/GRU4Rec

Reimplementations of GRU4Rec
• Checked

▪ 2 PyTorch implementations

o GRU4REC-pytorch

– Popular reimplementation

– Published in 2018

– Last commit in 2021

o Torch-GRU4Rec

– Newer implementation from 2020

▪ 2 Tensorflow/Keras implementations

o GRU4Rec_Tensorflow

– Popular reimplementation

– Published in 2017

– Last commit in 2019

o KerasGRU4Rec

– Published in 2018

– Last meaningful update in 2020

▪ 2 benchmarking framework implementations

o Microsoft Recommenders

– Large algorithm collection

o Recpack

– Recently released framework

Reimplementations of GRU4Rec
• Checked

▪ 2 PyTorch implementations

o GRU4REC-pytorch

– Popular reimplementation

– Published in 2018

– Last commit in 2021

o Torch-GRU4Rec

– Newer implementation from 2020

▪ 2 Tensorflow/Keras implementations

o GRU4Rec_Tensorflow

– Popular reimplementation

– Published in 2017

– Last commit in 2019

o KerasGRU4Rec

– Published in 2018

– Last meaningful update in 2020

▪ 2 benchmarking framework implementations

o Microsoft Recommenders

– Large algorithm collection

o Recpack

– Recently released framework

Recommended

by RecSys

2023 CFP

Reimplementations of GRU4Rec
• Checked

▪ 2 PyTorch implementations

o GRU4REC-pytorch

– Popular reimplementation

– Published in 2018

– Last commit in 2021

o Torch-GRU4Rec

– Newer implementation from 2020

▪ 2 Tensorflow/Keras implementations

o GRU4Rec_Tensorflow

– Popular reimplementation

– Published in 2017

– Last commit in 2019

o KerasGRU4Rec

– Published in 2018

– Last meaningful update in 2020

▪ 2 benchmarking framework implementations

o Microsoft Recommenders

– Large algorithm collection

o Recpack

– Recently released framework

Recommended

by RecSys

2023 CFP

• Others (we know of)

▪ Discontinued PyTorch reimplementation

▪ RecBole implementation

o Doesn’t even reference the right papers

RQ1: Do they implement the same architecture as the
original?

• Architecture of GRU4Rec

Input items of

minibatch

Target items of

minibatch

Target

embeddings

Input embeddings Session state for

step t

Embedding table,

inputs (3 options)

GRU

layer(s)

Dot product

Loss

function

Neg. samples of

minibatch

Neg. sample

embeddings

Embedding table,

outputs

Scores

RQ1: Do they implement the same architecture as the
original?

• Architecture of GRU4Rec

Input items of

minibatch

Target items of

minibatch

Target

embeddings

Input embeddings Session state for

step t

Embedding table,

inputs (3 options)

GRU

layer(s)

Dot product

Loss

function

Neg. samples of

minibatch

Neg. sample

embeddings

Embedding table,

outputs

Scores

Those who could do it (5/6)

• GRU4REC-pytorch

• Torch-GRU4Rec

• GRU4Rec_Tensorflow

• KerasGRU4Rec

• Recpack

RQ1: Do they implement the same architecture as the
original?

• Architecture of GRU4Rec

• Different architecture in MS recommenders

Input sequences

of minibatch

Target items of

minibatch

Target

embeddings

Input embeddings Session state for

sequence
Embedding table,

inputs

GRU

layer(s)

Loss

function

Neg. samples of

minibatch

Neg. sample

embeddings

Embedding table,

outputs

Scores

Input items of

minibatch

Target items of

minibatch

Target

embeddings

Input embeddings Session state for

step t

Embedding table,

inputs (3 options)

GRU

layer(s)

Dot product

Loss

function

Neg. samples of

minibatch

Neg. sample

embeddings

Embedding table,

outputs

Scores

Clone

Session state for

sequence (xN)

FFN on

concatenated

state+embedding

Those who could do it (5/6)

• GRU4REC-pytorch

• Torch-GRU4Rec

• GRU4Rec_Tensorflow

• KerasGRU4Rec

• Recpack

RQ1: Do they implement the same architecture as the
original?

• Architecture of GRU4Rec

• Different architecture in MS recommenders

Input sequences

of minibatch

Target items of

minibatch

Target

embeddings

Input embeddings Session state for

sequence
Embedding table,

inputs

GRU

layer(s)

Loss

function

Neg. samples of

minibatch

Neg. sample

embeddings

Embedding table,

outputs

Scores

Input items of

minibatch

Target items of

minibatch

Target

embeddings

Input embeddings Session state for

step t

Embedding table,

inputs (3 options)

GRU

layer(s)

Dot product

Loss

function

Neg. samples of

minibatch

Neg. sample

embeddings

Embedding table,

outputs

Scores

Clone

Session state for

sequence (xN)

FFN on

concatenated

state+embedding

Severe scalability issue

• Number of negative samples is
strictly limited during training

• Requires negative sampling during
inference

▪ Evaluation flaw

• Not able to rank all items during
inference

Those who could do it (5/6)

• GRU4REC-pytorch

• Torch-GRU4Rec

• GRU4Rec_Tensorflow

• KerasGRU4Rec

• Recpack

RQ2: Do they have the same features as the original?

• GRU4Rec = GRU adapted to the recommendation problem
▪ Missing features (see table)

▪ Missing hyperparameters

o All versions: momentum, logQ

o Some versions: bpreg, embedding/hidden dropout, sample_alpha, …

GRU4Rec feature GRU4REC-pytorch Torch-GRU4Rec GRU4Rec_Tensorflow KerasGRU4Rec Recpack

Session parallel mini-batches

Negative

sampling

Mini-batch

Shared extra

Loss
Cross-entropy

BPR-max

Embedding

No embedding

Separate

Shared

Included

Missing

Partial or flawed

RQ3: Do they suffer from implementation errors?

Nature of the error Basic errors Inference errors Minor errors

(easy to notice & fix)

Major errors

(hard to notice or fix)

Core errors

(full rewrite)

Effort to fix Almost certainly

fixed by any user

Potentially fixed by

an involved user

Likely fixed by an

experienced user

May be fixed by a very

thorough user

Most likely NOT

fixed by any user

Examples - Typos/syntax errors

- Variables on the

incorrect device

- P(dropout) is used as

P(keep)

- Code is not prepared

for unseen test items

- Hidden states are not

reset properly

- Large initial accumulator

value prevents convergence

- Differences to the original

(learning rate decay,

initialization, optimizer)

- Hard-coded

hyperparameters

- Sampling and softmax are in

reverse order

- Softmax applied twice

- Hidden states are reset at incorrect

times

- Incorrect BPR-max loss

- Dropout can be set, but not applied

- Embedding and hidden dropout

uses the same parameter by mistake

- Sampling and

scoring are in

reverse order

Number of occurrences

GRU4REC-pytorch 1 1 0 5 1

Torch-GRU4Rec 1 0 0 0 1

GRU4Rec_Tensorflow 2 0 3 0 0

KerasGRU4Rec 0 0 2 2 0

Recpack 2 0 3 1 1

O
u

t-
o

f-
th

e
-

b
o

x

In
fe

re
n

c
e

 f
ix

M
in

o
r

fi
x

M
a

jo
r

fi
x

RQ4: How do missing features & errors affect offline results?

Official

implementation

Reimplementation

M
a

tc
h

in
g

 f
e

a
tu

re
s

O
ri

g
in

a
l

Improving/fixing Limiting features

O
u

t-
o

f-
th

e
-

b
o

x

In
fe

re
n

c
e

 f
ix

M
in

o
r

fi
x

M
a

jo
r

fi
x

RQ4: How do missing features & errors affect offline results?

Official

implementation

Reimplementation

M
a

tc
h

in
g

 f
e

a
tu

re
s

O
ri

g
in

a
l

Improving/fixing Limiting features

due to

fixable

error

due to not

fixable

error

due to

missing

features

Degradation due to errors

Total degradation

Degradation

O
u

t-
o

f-
th

e
-

b
o

x

In
fe

re
n

c
e

 f
ix

M
in

o
r

fi
x

M
a

jo
r

fi
x

RQ4: How do missing features & errors affect offline results?

Official

implementation

Reimplementation

M
a

tc
h

in
g

 f
e

a
tu

re
s

O
ri

g
in

a
l

Improving/fixing Limiting features

due to

fixable

error

due to not

fixable

error

due to

missing

features

Degradation due to errors

Total degradation

Degradation

Perf. loss

via errors

Perf. loss

via features

Total perf.

loss

MEDIAN

GRU4REC-pytorch -56.34% -46.14% -75.73%

Torch-GRU4Rec -1.29% -5.90% -7.55%

GRU4Rec_Tensorflow -80.59% -47.15% -89.46%

KerasGRU4Rec -9.54% -11.94% -21.32%

Recpack -21.23% -8.48% -30.27%

MAX

GRU4REC-pytorch -99.38% -63.88% -99.62%

Torch-GRU4Rec -10.46% -18.92% -27.24%

GRU4Rec_Tensorflow -88.44% -61.81% -93.89%

KerasGRU4Rec -26.69% -15.26% -37.87%

Recpack -37.14% -22.71% -48.86%

• Measured on 5 public session-based datasets

▪ Yoochoose, Rees46, Coveo, Retailrocket, Diginetica

• Next item prediction (strict)

• Recall & MRR

RQ5: Training time comparisons

• OOB versions vs. feature complete official versions

• Reimplementations are generally slow

• KerasGRU4Rec and Recpack versions scale badly (no sampling)

• Largest slowdown factor: 335.87x

451.75

1948.18 2082.11

981.87

13740.04 13458.18

1117.46 1275.9

0

2000

4000

6000

8000

10000

12000

14000

16000

Yoochoose

Epoch time (cross-entropy, best hyperparams),

Yoochoose dataset

GRU4Rec (original) GRU4REC-pytorch Torch-GRU4Rec

GRU4Rec_Tensorflow KerasGRU4Rec Recpack

Official PyTorch version Official Tensorflow version

367.41
7618.05 7192.88

2381.62

123265.62

49262.16

632.02 679.505

0

20000

40000

60000

80000

100000

120000

140000

Rees46

Epoch time (cross-entropy, best hyperparams),

Rees46 dataset

GRU4Rec (original) GRU4REC-pytorch Torch-GRU4Rec

GRU4Rec_Tensorflow KerasGRU4Rec Recpack

Official PyTorch version Official Tensorflow version

What does this mean?

• Final tally

▪ MS Recommender’s version is GRU4Rec in name only and deeply flawed

▪ Other versions miss at least one important feature of the original

▪ All versions have performance decreasing bugs

▪ Two implementations scale poorly

• Potentially a lot of research from the last 6-7 years used flawed baseline(s)

▪ Hard to tell: no indication of the implementation used

▪ Results might be invalidated

• Probably GRU4Rec is not the only algorithm affected

▪ It has a public version to base reimplementations on, yet they are still flawed

▪ Other well-known baselines should be checked

• Discussions

▪ Responsibility

▪ Trust in the tools we use

▪ How to correct affected work?

What can you do?

If your research used a flawed version

• Rerun experiments with official code

• Extend your work with the results

What can you do?

If your research used a flawed version

• Rerun experiments with official code

• Extend your work with the results

If you want to help

• Check reimplementations of other popular
baselines

What can you do?

If your research used a flawed version

• Rerun experiments with official code

• Extend your work with the results

If you want to help

• Check reimplementations of other popular
baselines

As an author

• Always state the implementation you use for every
baseline

• Including link, optionally commit hash

• Use official code if possible

What can you do?

If your research used a flawed version

• Rerun experiments with official code

• Extend your work with the results

If you want to help

• Check reimplementations of other popular
baselines

As an author

• Always state the implementation you use for every
baseline

• Including link, optionally commit hash

• Use official code if possible

If you reimplement an algorithm

• Validate your version against the original
before using or releasing it

• Compare metrics achieved on multiple datasets
under multiple hyperparameter settings

• Compare recommendation lists

• Check if your version has every feature/setting

• Describe the validation process and its results
in the README

• Consider if any future change to the original
code (e.g. bugfix) should be added to your
version as well

• If implementations diverge due to the original
changing, state it clearly

What can you do?

If your research used a flawed version

• Rerun experiments with official code

• Extend your work with the results

If you want to help

• Check reimplementations of other popular
baselines

As an author

• Always state the implementation you use for every
baseline

• Including link, optionally commit hash

• Use official code if possible

If you reimplement an algorithm

• Validate your version against the original
before using or releasing it

• Compare metrics achieved on multiple datasets
under multiple hyperparameter settings

• Compare recommendation lists

• Check if your version has every feature/setting

• Describe the validation process and its results
in the README

• Consider if any future change to the original
code (e.g. bugfix) should be added to your
version as well

• If implementations diverge due to the original
changing, state it clearly

As maintainer of a benchmarking framework

• Same as reimplementing any algorithm

• + validate every reimplementation submitted by
contributors

The wider picture (towards standardized benchmarking)

• State of RecSys benchmarking:

▪ Little has changed in the last decade

▪ Focus is on baseline reimplementations

▪ Collection of algorithms

▪ Evaluation is somewhat neglected

o Incorrect assumptions:

– One/few size fits all

– Single correct evaluation setup

The wider picture (towards standardized benchmarking)

• State of RecSys benchmarking:

▪ Little has changed in the last decade

▪ Focus is on baseline reimplementations

▪ Collection of algorithms

▪ Evaluation is somewhat neglected

o Incorrect assumptions:

– One/few size fits all

– Single correct evaluation setup

• Towards standardized benchmarking

▪ Collect popular recommendation tasks

o E.g. CTR prediction, session-based
recommendation, user-based recommendation,
warm/cold-start versions, reoccurrence
prediction, etc.)

▪ Evaluation stems from the tasks:

o agree on offline evaluation setups

o datasets (and their preprocessing)

o for each task

▪ Focus on the evaluation code of these setups

o including dataset & preprocessing

▪ Provide simple interfaces for evaluating external
algorithms

o Authors then can use the framework during
research

▪ Only once everything is ready, add some of the
most well-known baselines

Thanks for your attention!

Read the paper! Check out the

project website!

We’d also like to help.

Official reimplementations of GRU4Rec

PyTorch Tensorflow

	Slide 1: The Effect of Third Party Implementations on Reproducibility
	Slide 2: Challenges of comparing the performance of algorithms
	Slide 3: Challenges of comparing the performance of algorithms
	Slide 4: Challenges of comparing the performance of algorithms
	Slide 5: Challenges of comparing the performance of algorithms
	Slide 6: Challenges of comparing the performance of algorithms
	Slide 7: Challenges of comparing the performance of algorithms
	Slide 8: Challenges of comparing the performance of algorithms
	Slide 9: Why are algorithms reimplemented?
	Slide 10: Why are algorithms reimplemented?
	Slide 11: Why are algorithms reimplemented?
	Slide 12: Why are algorithms reimplemented?
	Slide 13: Why are algorithms reimplemented?
	Slide 14: Why are algorithms reimplemented?
	Slide 15: Comparing reimplementations of an algorithm to the original
	Slide 16: Comparing reimplementations of an algorithm to the original
	Slide 17: Comparing reimplementations of an algorithm to the original
	Slide 18: Comparing reimplementations of an algorithm to the original
	Slide 19: Comparing reimplementations of an algorithm to the original
	Slide 20: Reimplementations of GRU4Rec
	Slide 21: Reimplementations of GRU4Rec
	Slide 22: Reimplementations of GRU4Rec
	Slide 23: RQ1: Do they implement the same architecture as the original?
	Slide 24: RQ1: Do they implement the same architecture as the original?
	Slide 25: RQ1: Do they implement the same architecture as the original?
	Slide 26: RQ1: Do they implement the same architecture as the original?
	Slide 27: RQ2: Do they have the same features as the original?
	Slide 28: RQ3: Do they suffer from implementation errors?
	Slide 29: RQ4: How do missing features & errors affect offline results?
	Slide 30: RQ4: How do missing features & errors affect offline results?
	Slide 31: RQ4: How do missing features & errors affect offline results?
	Slide 32: RQ5: Training time comparisons
	Slide 33: What does this mean?
	Slide 34: What can you do?
	Slide 35: What can you do?
	Slide 36: What can you do?
	Slide 37: What can you do?
	Slide 38: What can you do?
	Slide 39: The wider picture (towards standardized benchmarking)
	Slide 40: The wider picture (towards standardized benchmarking)
	Slide 41: Thanks for your attention!

