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Official public implementation
https://github.com/hidasib/GRU4Rec

• Since spring 2016 

• (ICLR publication)

• Still supported today

• Well-known

Implemented in Theano

• Discontinued DL framework (2018)
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• Others (we know of)

▪ Discontinued PyTorch reimplementation

▪ RecBole implementation

o Doesn’t even reference the right papers
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Severe scalability issue

• Number of negative samples is 
strictly limited during training

• Requires negative sampling during 
inference

▪ Evaluation flaw

• Not able to rank all items during 
inference
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RQ2: Do they have the same features as the original?

• GRU4Rec = GRU adapted to the recommendation problem
▪ Missing features (see table)

▪ Missing hyperparameters

o All versions: momentum, logQ

o Some versions: bpreg, embedding/hidden dropout, sample_alpha, …

GRU4Rec feature GRU4REC-pytorch Torch-GRU4Rec GRU4Rec_Tensorflow KerasGRU4Rec Recpack

Session parallel mini-batches

Negative 

sampling

Mini-batch

Shared extra

Loss
Cross-entropy

BPR-max

Embedding

No embedding

Separate

Shared

Included

Missing

Partial or flawed



RQ3: Do they suffer from implementation errors?

Nature of the error Basic errors Inference errors Minor errors

(easy to notice & fix)

Major errors

(hard to notice or fix)

Core errors

(full rewrite)

Effort to fix Almost certainly 

fixed  by any user

Potentially fixed by 

an involved user

Likely fixed by an 

experienced user

May be fixed by a very 

thorough user

Most likely NOT 

fixed by any user

Examples - Typos/syntax errors

- Variables on the 

incorrect device

- P(dropout) is used as 

P(keep)

- Code is not prepared 

for unseen test items

- Hidden states are not 

reset properly

- Large initial accumulator 

value prevents convergence

- Differences to the original 

(learning rate decay, 

initialization, optimizer) 

- Hard-coded 

hyperparameters

- Sampling and softmax are in 

reverse order

- Softmax applied twice

- Hidden states are reset at incorrect 

times

- Incorrect BPR-max loss 

- Dropout can be set, but not applied

- Embedding and hidden dropout 

uses the same parameter by mistake

- Sampling and 

scoring are in 

reverse order

Number of occurrences

GRU4REC-pytorch 1 1 0 5 1

Torch-GRU4Rec 1 0 0 0 1

GRU4Rec_Tensorflow 2 0 3 0 0

KerasGRU4Rec 0 0 2 2 0

Recpack 2 0 3 1 1
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error
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fixable 

error

due to 

missing 

features

Degradation due to errors

Total degradation

Degradation

Perf. loss 

via errors

Perf. loss 

via features

Total perf. 

loss

MEDIAN

GRU4REC-pytorch -56.34% -46.14% -75.73%

Torch-GRU4Rec -1.29% -5.90% -7.55%

GRU4Rec_Tensorflow -80.59% -47.15% -89.46%

KerasGRU4Rec -9.54% -11.94% -21.32%

Recpack -21.23% -8.48% -30.27%

MAX

GRU4REC-pytorch -99.38% -63.88% -99.62%

Torch-GRU4Rec -10.46% -18.92% -27.24%

GRU4Rec_Tensorflow -88.44% -61.81% -93.89%

KerasGRU4Rec -26.69% -15.26% -37.87%

Recpack -37.14% -22.71% -48.86%

• Measured on 5 public session-based datasets

▪ Yoochoose, Rees46, Coveo, Retailrocket, Diginetica

• Next item prediction (strict)

• Recall & MRR



RQ5: Training time comparisons

• OOB versions vs. feature complete official versions

• Reimplementations are generally slow

• KerasGRU4Rec and Recpack versions scale badly (no sampling)

• Largest slowdown factor: 335.87x
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What does this mean?

• Final tally

▪ MS Recommender’s version is GRU4Rec in name only and deeply flawed

▪ Other versions miss at least one important feature of the original

▪ All versions have performance decreasing bugs

▪ Two implementations scale poorly

• Potentially a lot of research from the last 6-7 years used flawed baseline(s)

▪ Hard to tell: no indication of the implementation used

▪ Results might be invalidated

• Probably GRU4Rec is not the only algorithm affected

▪ It has a public version to base reimplementations on, yet they are still flawed

▪ Other well-known baselines should be checked

• Discussions

▪ Responsibility

▪ Trust in the tools we use

▪ How to correct affected work?
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• Extend your work with the results

If you want to help

• Check reimplementations of other popular 
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As an author

• Always state the implementation you use for every 
baseline

• Including link, optionally commit hash

• Use official code if possible

If you reimplement an algorithm

• Validate your version against the original 
before using or releasing it

• Compare metrics achieved on multiple datasets 
under multiple hyperparameter settings

• Compare recommendation lists

• Check if your version has every feature/setting

• Describe the validation process and its results 
in the README

• Consider if any future change to the original 
code (e.g. bugfix) should be added to your 
version as well

• If implementations diverge due to the original 
changing, state it clearly

As maintainer of a benchmarking framework

• Same as reimplementing any algorithm

• + validate every reimplementation submitted by 
contributors
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• State of RecSys benchmarking:

▪ Little has changed in the last decade

▪ Focus is on baseline reimplementations

▪ Collection of algorithms

▪ Evaluation is somewhat neglected

o Incorrect assumptions:

– One/few size fits all

– Single correct evaluation setup

• Towards standardized benchmarking

▪ Collect popular recommendation tasks 

o E.g. CTR prediction, session-based 
recommendation, user-based recommendation, 
warm/cold-start versions, reoccurrence 
prediction, etc.)

▪ Evaluation stems from the tasks: 

o agree on offline evaluation setups 

o datasets (and their preprocessing) 

o for each task

▪ Focus on the evaluation code of these setups

o including dataset & preprocessing

▪ Provide simple interfaces for evaluating external 
algorithms

o Authors then can use the framework during 
research

▪ Only once everything is ready, add some of the 
most well-known baselines



Thanks for your attention!

Read the paper! Check out the 

project website!

We’d also like to help.

Official reimplementations of GRU4Rec

PyTorch Tensorflow


	Slide 1: The Effect of Third Party Implementations on Reproducibility
	Slide 2: Challenges of comparing the performance of algorithms
	Slide 3: Challenges of comparing the performance of algorithms
	Slide 4: Challenges of comparing the performance of algorithms
	Slide 5: Challenges of comparing the performance of algorithms
	Slide 6: Challenges of comparing the performance of algorithms
	Slide 7: Challenges of comparing the performance of algorithms
	Slide 8: Challenges of comparing the performance of algorithms
	Slide 9: Why are algorithms reimplemented?
	Slide 10: Why are algorithms reimplemented?
	Slide 11: Why are algorithms reimplemented?
	Slide 12: Why are algorithms reimplemented?
	Slide 13: Why are algorithms reimplemented?
	Slide 14: Why are algorithms reimplemented?
	Slide 15: Comparing reimplementations of an algorithm to the original
	Slide 16: Comparing reimplementations of an algorithm to the original
	Slide 17: Comparing reimplementations of an algorithm to the original
	Slide 18: Comparing reimplementations of an algorithm to the original
	Slide 19: Comparing reimplementations of an algorithm to the original
	Slide 20: Reimplementations of GRU4Rec
	Slide 21: Reimplementations of GRU4Rec
	Slide 22: Reimplementations of GRU4Rec
	Slide 23: RQ1: Do they implement the same architecture as the original?
	Slide 24: RQ1: Do they implement the same architecture as the original?
	Slide 25: RQ1: Do they implement the same architecture as the original?
	Slide 26: RQ1: Do they implement the same architecture as the original?
	Slide 27: RQ2: Do they have the same features as the original?
	Slide 28: RQ3: Do they suffer from implementation errors?
	Slide 29: RQ4: How do missing features & errors affect offline results?
	Slide 30: RQ4: How do missing features & errors affect offline results?
	Slide 31: RQ4: How do missing features & errors affect offline results?
	Slide 32: RQ5: Training time comparisons
	Slide 33: What does this mean?
	Slide 34: What can you do?
	Slide 35: What can you do?
	Slide 36: What can you do?
	Slide 37: What can you do?
	Slide 38: What can you do?
	Slide 39: The wider picture (towards standardized benchmarking)
	Slide 40: The wider picture (towards standardized benchmarking)
	Slide 41: Thanks for your attention!

