GRU4Recv2

Recurrent neural networks with top-k gains for session-based recommendations

Balázs Hidasi @balazshidasi

At a glance

- Improvements on GRU4Rec [Hidasi et. al, 2015]
 - Session-based recommendations with RNNs
- General
 - Negative sampling strategies
 - Loss function design
- Specific
 - Constrained embeddings
 - Implementation details
- Offline tests: up to 35% improvement
- Online tests & observations

GRU4Rec overview

Context: session-based recommendations

- User identification
 - Feasibility
 - Privacy
 - Regulations
- User intent
 - Disjoint sessions
 - o Need
 - Situation (context)
 - o "Irregularities"
- Session-based recommendations
- Permanent user cold-start

Preliminaries

Next click prediction

Top-N recommendation (ranking)

• Implicit feedback

Recurrent Neural Networks

- Basics
 - Input: sequential information $({x_t}_{t=1}^T)$
 - Hidden state (h_t) :
 - o representation of the sequence so far
 - o influenced by every element of the sequence up to t
 - $h_t = f(Wx_t + Uh_{t-1} + b)$
- Gated RNNs (GRU, LSTM & others)
 - Basic RNN is subject to the exploding/vanishing gradient problem
 - Use $h_t = h_{t-1} + \Delta_t$ instead of rewriting the hidden state
 - Information flow is controlled by gates
- Gated Recurrent Unit (GRU)
 - Update gate (z)
 - Reset gate (r)
 - $z_t = \sigma(W_z x_t + U_z h_{t-1} + b_z)$
 - $r_t = \sigma(W_r x_t + U_r h_{t-1} + b_r)$
 - $\tilde{h}_t = \tanh(Wx_t + r_t \circ Uh_{t-1} + b)$
 - $h_t = z_t \circ h_{t-1} + (1 z_t) \circ \tilde{h}_t$

GRU4Rec

- GRU trained on session data, adapted to the recommendation task
 - Input: current item ID
 - Hidden state: session representation
 - Output: likelihood of being the next item
- Session-parallel mini-batches
 - Mini-batch is defined over sessions
 - Update with one step BPTT
 - o Lots of sessions are very short
 - 2D mini-batching, updating on longer sequences (with or without padding) didn't improve accuracy
- Output sampling
 - Computing scores for all items (100K 1M) in every step is slow
 - One positive item (target) + several samples
 - Fast solution: scores on mini-batch targets
 - Items of the other mini-batch are negative samples for the current mini-batch
- Loss functions: cross-entropy, BPR, TOP1

Negative sampling & loss function design

Negative sampling

- Training step
 - Score all items
 - Push target items forward (modify model parameters)
- Many training steps & many items
 - Not scalable
 - $O(S_I N^+)$
- Sample negative examples instead $\rightarrow O(KN^+)$
- Sampling probability
 - Must be quick to calculate
 - Two popular choices
 - Output of the second se
 - Proportional to support → better in practice, fast start, some relations are not examined enough
 - Optimal choice
 - Data dependent
 - o Changing during training might help

Mini-batch based negative sampling

- Target items of other examples from the mini-batch → as negative samples
- Pros
 - Efficient & simple implementation on GPU
 - Sampling probability proportional Session5 to support
- Cons
 - Number of samples is tied to the batch size
 - Mini-batch training: smaller batches
 - Negative sampling: larger batches
 - Sampling probability is always the same

➡	1	0	0	0	0	0	0	0
➡	0	0	0	0	1	0	0	0
-	0	0	0	0	0	0	0	1

Solution: add more samples!

- Add extra samples
- Shared between mini-batches
- Sampling probability: $p_i \sim \operatorname{supp}^{\alpha}$
 - $\alpha = 0 \rightarrow$ uniform
 - $\alpha = 1 \rightarrow$ popularity based
- Implementation trick
 - Sampling interrupts GPU computations
 - More efficient in parallel
 - Sample store (cache)
 - o Precompute 10-100M samples
 - o Resample is we used them all

Another look the loss functions

- Listwise losses on the target+negative samples
 - Cross-entropy + softmax
 - Cross-entropy in itself is pointwise
 - Target should have the maximal score

•
$$XE = -\log(s_i)$$
, $s_i = \frac{e^{r_i}}{\sum_{j=1}^{K} e^{r_j}}$

- o Unstable in previous implementation
 - Rounding errors
 - Fixed
- Average BPR-score
 - o BPR in itself is pairwise
 - Target should have higher score than all negative samples

$$\circ BPR = -\frac{1}{K} \sum_{j=1}^{K} \log\left(\sigma(r_i - r_j)\right)$$

- TOP1 score
 - Heuristic loss, idea is similar to the average BPR
 - o Score regularization part

•
$$TOP1 = \frac{1}{K} \sum_{j=1}^{K} \left(\sigma(r_j - r_i) + \sigma(r_j^2) \right)$$

- Earlier results
 - Similar performance
 - TOP1 is slightly better

Unexpected behaviour of pairwise losses

- Unexpected behaviour
 - Several negative samples \rightarrow good results
 - Many negative samples \rightarrow bad results
- Gradient (BPR wrt. target score)

•
$$\frac{\partial L_i}{\partial r_i} = \frac{1}{K} \sum_{j=1}^{K} \left(1 - \sigma (r_i - r_j) \right)$$

- Irrelevant negative sample
 - Whose score is already lower than r_i
 - o Changes during training
 - Doesn't contribute to optimization: $(1 \sigma(r_i r_j)) \sim 0$
 - Number of irrelevant samples increases as training progresses
- Averaging with many negative samples \rightarrow gradient vanishes
 - Target will be pushed up for a while
 - Slows down as approaches the top
 - More samples: slows down earlier

Pairwise-max loss functions

- The target score should be higher than the maximum score amongst the negative samples
- BPR-max
 - $P(r_i > r_{\text{MAX}}|\theta) = \sum_{j=1}^{K} P(r_i > r_j | r_j = r_{\text{MAX}}, \theta) P(r_j = r_{\text{MAX}}|\theta)$
 - Use continuous approximations • $P(r_i > r_j | r_j = r_{MAX}, \theta) = \sigma(r_i - r_j)$ • $P(r_j = r_{MAX} | \theta) = \text{softmax}(\{r_k\}_{k=1}^K) = \frac{e^{r_j}}{\sum_{k=1}^K e^{r_k}} = s_j$

Softmax over negative samples only

- Minimize negative log probability
- Add ℓ_2 score regularization

•
$$L_i = -\log(\sum_{j=1}^K s_j \sigma(r_i - r_j)) + \lambda \sum_{j=1}^K r_j^2$$

Gradient of pairwise max losses

- BPR-max (wrt. r_i)
 - $\frac{\partial L_i}{\partial r_i} = \frac{\sum_{j=1}^K s_j \sigma(r_i r_j) \left(1 \sigma(r_i r_j)\right)}{\sum_{j=1}^K s_j \sigma(r_i r_j)}$
 - Weighted average of BPR gradients
 - Relative importance of samples: $\frac{s_j \sigma(r_i r_j)}{s_k \sigma(r_i r_k)} = \frac{e^{r_j} + e^{r_j + r_k r_i}}{e^{r_k} + e^{r_j + r_k r_i}}$
 - Smoothed softmax
 - If $r_i \gg \max(r_i, r_k) \rightarrow$ behaves like softmax
 - Stronger smoothing otherwise
 - Uniform \rightarrow softmax as r_i is pushed to the top

- BPR, 1st epoch
- BPR, 10th epoch
- BPR-max, 1st epoch
- BPR-max, 10th epoch

Number of samples: training times & performance

- Training times on GPU don't increase until the parallelization limit is reached
- Around the same place

- Significant improvements up to a certain point
- Diminishing returns after

The effect of the α parameter

- Data & loss dependent
 - Cross-entropy: favours lower values
 - BPR-max: 0.5 is usually a good choice (data dependent)
 - There is always a popularity based part of the samples
 - o Original mini-batch examples
 - \circ Removing these will result in higher optimal α
- CLASS dataset (cross-entropy, BPR-max)

Constrained embeddings & offline tests

Unified item representations in GRU4Rec (1/2)

- Hidden state x $W_y \rightarrow$ scores
 - One vector for each item \rightarrow "item feature matrix"
- Embedding

 - Can be used as the input of the GRU layer instead of the one-hot vector
 - Slightly decreases offline metrics
- Constrained embeddings (unified item representations)
 - Use the same matrix for both input and output embedding
 - Unified representations \rightarrow faster convergence
 - Embedding size tied to hidden the size of the last hidden state

Unified item representations in GRU4Rec (2/2)

- Model size: largest components scale with the items
 - One-hot input: X • $W_x^0, W_r^0, W_z^0, W_y \rightarrow S_I \times S_H$ • $U_h^0, U_r^0, U_z^0 \rightarrow S_H \times S_H$
 - Embedding input: X/2• $E, W_y \rightarrow S_I \times S_H$ • $W_x^0, W_r^0, W_z^0 \rightarrow S_E \times S_H$ • $U_h^0, U_r^0, U_z^0 \rightarrow S_H \times S_H$
 - Constrained embedding: X/4• $W_y \rightarrow S_I \times S_H$
 - $\circ W_x^0, W_r^0, W_z^0, U_h^0, U_r^0, U_z^0 \rightarrow S_H \times S_H$

Offline results

- Over item-kNN
 - +25-52% in recall@20
 - +35-55% in MRR@20
- Over the original GRU4Rec
 - +18-35% in recall@20
 - +27-37% in MRR@20
- BPR-max vs. (fixed) cross-entropy
 - +2-6% improvement in 2 of 4 cases
 - No statistically significant difference in the other 2 case

Dataset	Item GRU4Rec		GRU4Rec with additional samples					
	kNN	original	XE	TOP1	XE	TOP1-max	BPR-max	
				Recall@20				
RSC15	0.5065	0.5853	0.5781	0.6117 (+20.77%, +4.51%)	0.7208 (+42.31%, +23.15%)	0.7086 (+39.91%, +21.07%)	0.7211 (+42.37%, +23.20%)	
VIDEO	0.5201	0.5051	0.5060	0.5325 (+2.40%, +5.43%)	0.6400 (+23.06%, +26.72%)	0.6421 (+23.46%, +27.12%)	0.6517 (+25.31%, +29.03%)	
VIDXL	0.6263	0.6831	0.7046	0.6723 (+7.35%, -1.58%)	0.8028 (+28.19%, +17.53%)	0.7935 (+26.70%, +16.16%)	0.8058 (+28.66%, +17.97%)	
CLASS	0.2201	0.2478	0.2545	0.2342 (+6.41%, -5.50%)	0.3137 (+42.54%, +26.61%)	0.3252 (+47.75%, +31.22%)	0.3337 (+51.61%, +34.66%)	
				MRR@20				
RSC15	0.2048	0.2305	0.2375	0.2367 (+15.61%, +2.69%)	0.3137 (+53.16%, +36.08%)	0.3045 (+48.70%, +32.08%)	0.3170 (+54.78%, +37.52%)	
VIDEO	0.2257	0.2359	0.2609	0.2295 (+1.69%, -2.73%)	0.3079 (+36.42%, +30.52%)	0.2950 (+30.72%, +25.05%)	0.3089 (+36.87%, +30.95%)	
VIDXL	0.3740	0.3847	0.4343	0.3608 (-3.53%, -6.21%)	0.5031 (+34.52%, +30.78%)	0.4939 (+32.05%, +28.39%)	0.5066 (+35.45%, +31.68%)	
CLASS	0.0799	0.0949	0.0995	0.0870 (+8.83%, -8.36%)	0.1167 (+46.08%, +22.99%)	0.1198 (+49.93%, +26.25%)	0.1202 (+50.40%, +26.63%)	

- Constrained embedding
 - Most cases: slightly worse MRR & better recall
 - Huge improvements on the CLASS datasset (+18.74% in recall, +29.44% in MRR)

Online A/B tests

A/B test - video service (1/3)

- Setup
 - Video page
 - Recommended videos on a strip
 - Autoplay functionality
 - Recommendations are NOT recomputed if the user clicks on any of the recommended videos or autoplay loads a new video
 - User based A/B split
- Algorithms
 - Original algorithm: previous recommendation logic
 - GRU4Rec next best: N guesses for the next item
 - GRU4Rec sequence: sequence of length N as the continuation of the current session
 - o Greedy generation

A/B test - video service (2/3)

- Technical details
 - User based A/B split
 - GRU4Rec serving from a single GPU using a single thread
 - Score computations for ~500K items in 1-2ms (next best)
 - Constant retraining
 - GRU4Rec: ~1.5 hours on ~30M events (including data collection and preprocessing)
 - Original logic: different parts with different frequency
 - GRU4Rec falls back to the original logic if it can't recommend or times out

• KPIs (relative to the number of recommendation requests)

- Watch time
- Videos played
- Recommendations clicked
- Bots and power users are excluded from the KPI computations

A/B test - video service (3/3)

A/B test – long term effects (1/3)

• Watch time

A/B test – long term effects (2/3)

- GRU4Rec: strong generalization capabilities
 - Finds hidden gems
 - Unlike counting based approaches
 - Not obvious in offline only testing
- Feedback loop
 - Baseline trains also sees the feedback generated for recommendations of other groups
 - Learns how to recommend hidden gems
- GRU4Rec maintains some lead
 - New items are constantly uploaded
- Comparison of different countries

A/B test – long term effects (3/3)

Videos played

- Next best and sequence switched places
- Sequence mode: great for episodic content, can suffer otherwise
- Next best mode: more diverse, better for non-episodic content
- Feedback loop: next best learns some of the episodic recommendations

A/B test - online marketplace

- Differences in setup
 - On home page
 - Next best mode only
 - KPI: CTR
- Items have limited lifespan
 - Will GRU4Rec keep its 19-20% lead?

Thank you! Q&A

Check out the code (free for research): https://github.com/hidasib/GRU4Rec

Read the preprint: <u>https://arxiv.org/abs/1706.03847</u>

