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At a glance

• Improvements on GRU4Rec [Hidasi et. al, 2015]

▪ Session-based recommendations with RNNs

• General

▪ Negative sampling strategies

▪ Loss function design

• Specific

▪ Constrained embeddings

▪ Implementation details

• Offline tests: up to 35% improvement

• Online tests & observations



GRU4Rec overview



Context: session-based recommendations

• User identification
▪ Feasibility

▪ Privacy

▪ Regulations

• User intent
▪ Disjoint sessions

o Need

o Situation (context)

o „Irregularities”

• Session-based recommendations

• Permanent user cold-start



Preliminaries

• Next click prediction

• Top-N recommendation (ranking)

• Implicit feedback



Recurrent Neural Networks

• Basics
▪ Input: sequential information ( 𝑥𝑡 𝑡=1

𝑇 )

▪ Hidden state (ℎ𝑡): 

o representation of the sequence so far

o influenced by every element of the sequence up to t

▪ ℎ𝑡 = 𝑓 𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏

• Gated RNNs (GRU, LSTM & others)
▪ Basic RNN is subject to the exploding/vanishing gradient problem

▪ Use ℎ𝑡 = ℎ𝑡−1 + Δ𝑡 instead of rewriting the hidden state

▪ Information flow is controlled by gates

• Gated Recurrent Unit (GRU)
▪ Update gate (z)

▪ Reset gate (r)

▪ 𝑧𝑡 = 𝜎 𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧

▪ 𝑟𝑡 = 𝜎 𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟

▪ ෨ℎ𝑡 = tanh 𝑊𝑥𝑡 + 𝑟𝑡 ∘ 𝑈ℎ𝑡−1 + 𝑏

▪ ℎ𝑡 = 𝑧𝑡 ∘ ℎ𝑡−1 + 1 − 𝑧𝑡 ∘ ෨ℎ𝑡
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GRU4Rec

• GRU trained on session data, adapted to the 
recommendation task
▪ Input: current item ID

▪ Hidden state: session representation

▪ Output: likelihood of being the next item

• Session-parallel mini-batches
▪ Mini-batch is defined over sessions

▪ Update with one step BPTT

o Lots of sessions are very short

o 2D mini-batching, updating on longer sequences 
(with or without padding) didn’t improve accuracy

• Output sampling
▪ Computing scores for all items (100K – 1M) in every 

step is slow

▪ One positive item (target) + several samples

▪ Fast solution: scores on mini-batch targets

o Items of the other mini-batch are negative samples 
for the current mini-batch

• Loss functions: cross-entropy, BPR, TOP1

GRU layer

One-hot vector

Weighted output

Scores on items

f()

One-hot vector

ItemID (next)

ItemID



Negative sampling & loss 
function design



Negative sampling

• Training step
▪ Score all items

▪ Push target items forward (modify model parameters)

• Many training steps & many items
▪ Not scalable

▪ 𝑂 𝑆𝐼𝑁+

• Sample negative examples instead → 𝑂 𝐾𝑁+

• Sampling probability
▪ Must be quick to calculate

▪ Two popular choices

o Uniform → many unnecessary steps

o Proportional to support → better in practice, fast start, some 
relations are not examined enough

▪ Optimal choice

o Data dependent

o Changing during training might help



Mini-batch based negative sampling

• Target items of other examples 
from the mini-batch → as 
negative samples

• Pros
▪ Efficient & simple 

implementation on GPU

▪ Sampling probability proportional 
to support

• Cons
▪ Number of samples is tied to the 

batch size

o Mini-batch training: smaller 
batches

o Negative sampling: larger 
batches

▪ Sampling probability is always 
the same
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Solution: add more samples! 

• Add extra samples

• Shared between mini-batches

• Sampling probability: 𝑝𝑖 ∼ supp𝛼

▪ 𝛼 = 0 → uniform

▪ 𝛼 = 1 → popularity based

• Implementation trick

▪ Sampling interrupts GPU computations

▪ More efficient in parallel

▪ Sample store (cache)

o Precompute 10-100M samples

o Resample is we used them all



Another look the loss functions

• Listwise losses on the target+negative samples
▪ Cross-entropy + softmax

o Cross-entropy in itself is pointwise

o Target should have the maximal score

o 𝑋𝐸 = − log 𝑠𝑖 ,  𝑠𝑖 =
𝑒𝑟𝑖

σ𝑗=1
𝐾 𝑒

𝑟𝑗

o Unstable in previous implementation

– Rounding errors

– Fixed

▪ Average BPR-score

o BPR in itself is pairwise

o Target should have higher score than all negative samples

o 𝐵𝑃𝑅 = −
1

𝐾
σ𝑗=1

𝐾 log 𝜎 𝑟𝑖 − 𝑟𝑗

▪ TOP1 score

o Heuristic loss, idea is similar to the average BPR

o Score regularization part

o 𝑇𝑂𝑃1 =
1

𝐾
σ𝑗=1

𝐾 𝜎 𝑟𝑗 − 𝑟𝑖 + 𝜎 𝑟𝑗
2

• Earlier results
▪ Similar performance

▪ TOP1 is slightly better



Unexpected behaviour of pairwise losses

• Unexpected behaviour
▪ Several negative samples → good results

▪ Many negative samples → bad results

• Gradient (BPR wrt. target score)

▪
𝜕𝐿𝑖

𝜕𝑟𝑖
=

1

𝐾
σ𝑗=1

𝐾 1 − 𝜎 𝑟𝑖 − 𝑟𝑗

• Irrelevant negative sample
▪ Whose score is already lower than 𝑟𝑖

o Changes during training

▪ Doesn’t contribute to optimization: 1 − 𝜎 𝑟𝑖 − 𝑟𝑗 ∼ 0

▪ Number of irrelevant samples increases as training progresses

• Averaging with many negative samples → gradient vanishes
▪ Target will be pushed up for a while

▪ Slows down as approaches the top

▪ More samples: slows down earlier



Pairwise-max loss functions

• The target score should be higher than the 

maximum score amongst the negative samples

• BPR-max

▪ 𝑃 𝑟𝑖 > 𝑟MAX|𝜃 = σ𝑗=1
𝐾 𝑃 𝑟𝑖 > 𝑟𝑗 𝑟𝑗 = 𝑟MAX, 𝜃 𝑃 𝑟𝑗 = 𝑟MAX|𝜃

▪ Use continuous approximations

o 𝑃 𝑟𝑖 > 𝑟𝑗 𝑟𝑗 = 𝑟MAX, 𝜃 = 𝜎 𝑟𝑖 − 𝑟𝑗

o 𝑃 𝑟𝑗 = 𝑟MAX|𝜃 = softmax 𝑟𝑘 𝑘=1
𝐾 =

𝑒
𝑟𝑗

σ𝑘=1
𝐾 𝑒𝑟𝑘

= 𝑠𝑗

– Softmax over negative samples only

▪ Minimize negative log probability

▪ Add ℓ2 score regularization

• 𝐿𝑖 = − log σ𝑗=1
𝐾 𝑠𝑗𝜎 𝑟𝑖 − 𝑟𝑗 + 𝜆 σ𝑗=1

𝐾 𝑟𝑗
2



Gradient of pairwise max losses

• BPR-max (wrt. 𝑟𝑖)

▪
𝜕𝐿𝑖

𝜕𝑟𝑖
=

σ𝑗=1
𝐾 𝑠𝑗𝜎 𝑟𝑖−𝑟𝑗 1−𝜎 𝑟𝑖−𝑟𝑗

σ𝑗=1
𝐾 𝑠𝑗𝜎 𝑟𝑖−𝑟𝑗

▪ Weighted average of BPR gradients

o Relative importance of samples: 
𝑠𝑗𝜎 𝑟𝑖−𝑟𝑗

𝑠𝑘𝜎 𝑟𝑖−𝑟𝑘
=

𝑒
𝑟𝑗+𝑒

𝑟𝑗+𝑟𝑘−𝑟𝑖

𝑒𝑟𝑘+𝑒
𝑟𝑗+𝑟𝑘−𝑟𝑖

o Smoothed softmax

– If 𝑟𝑖 ≫ max 𝑟𝑗, 𝑟𝑘  → behaves like softmax

– Stronger smoothing otherwise

– Uniform → softmax as 𝑟𝑖 is pushed to the top



Number of samples: training times & 
performance

• Training times on GPU 

don’t increase until the 

parallelization limit is 

reached

• Around the same place

• Significant improvements 

up to a certain point

• Diminishing returns after



The effect of the α parameter

• Data & loss dependent

▪ Cross-entropy: favours lower values

▪ BPR-max: 0.5 is usually a good choice (data dependent)

▪ There is always a popularity based part of the samples

o Original mini-batch examples

o Removing these will result in higher optimal 𝛼

• CLASS dataset (cross-entropy, BPR-max)



Constrained embeddings & 
offline tests



Unified item representations in GRU4Rec (1/2)

• Hidden state x 𝑊𝑦 → scores

▪ One vector for each item → „item feature matrix”

• Embedding

▪ A vector for each item → another „item feature matrix”

▪ Can be used as the input of the GRU layer instead of the one-hot 

vector

▪ Slightly decreases offline metrics

• Constrained embeddings (unified item representations)

▪ Use the same matrix for both input and output embedding

▪ Unified representations → faster convergence

▪ Embedding size tied to hidden the size of the last hidden state



Unified item representations in GRU4Rec (2/2)

• Model size: largest components scale with the 
items
▪ One-hot input: 𝑋

o 𝑊𝑥
0, 𝑊𝑟

0, 𝑊𝑧
0, 𝑊𝑦 → 𝑆𝐼 × 𝑆𝐻

o 𝑈ℎ
0, 𝑈𝑟

0, 𝑈𝑧
0 → 𝑆𝐻 × 𝑆𝐻

▪ Embedding input: 𝑋/2
o 𝐸, 𝑊𝑦 → 𝑆𝐼 × 𝑆𝐻

o 𝑊𝑥
0, 𝑊𝑟

0, 𝑊𝑧
0 → 𝑆𝐸 × 𝑆𝐻

o 𝑈ℎ
0, 𝑈𝑟

0, 𝑈𝑧
0 → 𝑆𝐻 × 𝑆𝐻

▪ Constrained embedding: 𝑋/4
o 𝑊𝑦 → 𝑆𝐼 × 𝑆𝐻

o 𝑊𝑥
0, 𝑊𝑟

0, 𝑊𝑧
0, 𝑈ℎ

0, 𝑈𝑟
0, 𝑈𝑧

0 → 𝑆𝐻 × 𝑆𝐻
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Offline results

• Over item-kNN

▪ +25-52% in recall@20

▪ +35-55% in MRR@20

• Over the original GRU4Rec

▪ +18-35% in recall@20

▪ +27-37% in MRR@20

• BPR-max vs. (fixed) cross-entropy

▪ +2-6% improvement in 2 of 4 cases

▪ No statistically significant difference in the other 2 case

• Constrained embedding

▪ Most cases: slightly worse MRR & better recall

▪ Huge improvements on the CLASS datasset (+18.74% in recall, +29.44% in MRR)



Online A/B tests



A/B test - video service (1/3)

• Setup

▪ Video page

▪ Recommended videos on a strip

▪ Autoplay functionality

▪ Recommendations are NOT recomputed if the user clicks on any of 

the recommended videos or autoplay loads a new video

▪ User based A/B split

• Algorithms

▪ Original algorithm: previous recommendation logic

▪ GRU4Rec next best: N guesses for the next item

▪ GRU4Rec sequence: sequence of length N as the continuation of 

the current session

o Greedy generation



A/B test - video service (2/3)

• Technical details
▪ User based A/B split

▪ GRU4Rec serving from a single GPU using a single thread

o Score computations for ~500K items in 1-2ms (next best)

▪ Constant retraining 

o GRU4Rec: ~1.5 hours on ~30M events (including data collection and 
preprocessing)

o Original logic: different parts with different frequency

▪ GRU4Rec falls back to the original logic if it can’t recommend or times 
out

• KPIs (relative to the number of recommendation requests)
▪ Watch time

▪ Videos played

▪ Recommendations clicked

• Bots and power users are excluded from the KPI 
computations



A/B test - video service (3/3)



A/B test – long term effects (1/3)

• Watch time
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A/B test – long term effects (2/3)

• GRU4Rec: strong generalization capabilities

▪ Finds hidden gems

▪ Unlike counting based approaches

o Not obvious in offline only testing

• Feedback loop

▪ Baseline trains also sees the feedback generated for recommendations of other groups

▪ Learns how to recommend hidden gems

• GRU4Rec maintains some lead

▪ New items are constantly uploaded

• Comparison of different countries
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A/B test – long term effects (3/3)

• Videos played

▪ Next best and sequence switched places

▪ Sequence mode: great for episodic content, can suffer 

otherwise

▪ Next best mode: more diverse, better for non-episodic 

content

▪ Feedback loop: next best learns some of the episodic 

recommendations
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A/B test - online marketplace

• Differences in setup

▪ On home page

▪ Next best mode only

▪ KPI: CTR

• Items have limited lifespan

▪ Will GRU4Rec keep its 19-20% lead?

C
T

R Baseline

GRU4Rec



Thank you!
Q&A

Check out the code (free for research): 
https://github.com/hidasib/GRU4Rec

Read the preprint: https://arxiv.org/abs/1706.03847

https://github.com/hidasib/GRU4Rec
https://arxiv.org/abs/1706.03847
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