
GRU4Rec v2
Recurrent neural networks with top-k gains
for session-based recommendations

Balázs Hidasi

@balazshidasi

At a glance

• Improvements on GRU4Rec [Hidasi et. al, 2015]

▪ Session-based recommendations with RNNs

• General

▪ Negative sampling strategies

▪ Loss function design

• Specific

▪ Constrained embeddings

▪ Implementation details

• Offline tests: up to 35% improvement

• Online tests & observations

GRU4Rec overview

Context: session-based recommendations

• User identification
▪ Feasibility

▪ Privacy

▪ Regulations

• User intent
▪ Disjoint sessions

o Need

o Situation (context)

o „Irregularities”

• Session-based recommendations

• Permanent user cold-start

Preliminaries

• Next click prediction

• Top-N recommendation (ranking)

• Implicit feedback

Recurrent Neural Networks

• Basics
▪ Input: sequential information (𝑥𝑡 𝑡=1

𝑇)

▪ Hidden state (ℎ𝑡):

o representation of the sequence so far

o influenced by every element of the sequence up to t

▪ ℎ𝑡 = 𝑓 𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏

• Gated RNNs (GRU, LSTM & others)
▪ Basic RNN is subject to the exploding/vanishing gradient problem

▪ Use ℎ𝑡 = ℎ𝑡−1 + Δ𝑡 instead of rewriting the hidden state

▪ Information flow is controlled by gates

• Gated Recurrent Unit (GRU)
▪ Update gate (z)

▪ Reset gate (r)

▪ 𝑧𝑡 = 𝜎 𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧

▪ 𝑟𝑡 = 𝜎 𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟

▪ ෨ℎ𝑡 = tanh 𝑊𝑥𝑡 + 𝑟𝑡 ∘ 𝑈ℎ𝑡−1 + 𝑏

▪ ℎ𝑡 = 𝑧𝑡 ∘ ℎ𝑡−1 + 1 − 𝑧𝑡 ∘ ෨ℎ𝑡

ℎ
r

IN

OUT

z

+

GRU4Rec

• GRU trained on session data, adapted to the
recommendation task
▪ Input: current item ID

▪ Hidden state: session representation

▪ Output: likelihood of being the next item

• Session-parallel mini-batches
▪ Mini-batch is defined over sessions

▪ Update with one step BPTT

o Lots of sessions are very short

o 2D mini-batching, updating on longer sequences
(with or without padding) didn’t improve accuracy

• Output sampling
▪ Computing scores for all items (100K – 1M) in every

step is slow

▪ One positive item (target) + several samples

▪ Fast solution: scores on mini-batch targets

o Items of the other mini-batch are negative samples
for the current mini-batch

• Loss functions: cross-entropy, BPR, TOP1

GRU layer

One-hot vector

Weighted output

Scores on items

f()

One-hot vector

ItemID (next)

ItemID

Negative sampling & loss
function design

Negative sampling

• Training step
▪ Score all items

▪ Push target items forward (modify model parameters)

• Many training steps & many items
▪ Not scalable

▪ 𝑂 𝑆𝐼𝑁+

• Sample negative examples instead → 𝑂 𝐾𝑁+

• Sampling probability
▪ Must be quick to calculate

▪ Two popular choices

o Uniform → many unnecessary steps

o Proportional to support → better in practice, fast start, some
relations are not examined enough

▪ Optimal choice

o Data dependent

o Changing during training might help

Mini-batch based negative sampling

• Target items of other examples
from the mini-batch → as
negative samples

• Pros
▪ Efficient & simple

implementation on GPU

▪ Sampling probability proportional
to support

• Cons
▪ Number of samples is tied to the

batch size

o Mini-batch training: smaller
batches

o Negative sampling: larger
batches

▪ Sampling probability is always
the same

𝑖1,1 𝑖1,2 𝑖1,3 𝑖1,4

𝑖2,1 𝑖2,2 𝑖2,3

𝑖3,1 𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5 𝑖3,6

𝑖4,1 𝑖4,2

𝑖5,1 𝑖5,2 𝑖5,3

Session1

Session2

Session3

Session4

Session5

𝑖1,1 𝑖1,2 𝑖1,3

𝑖2,1 𝑖2,2

𝑖3,1 𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5

𝑖4,1

𝑖5,1 𝑖5,2

Input

Target

…

𝑖1,2 𝑖1,3 𝑖1,4

𝑖2,2 𝑖2,3

𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5 𝑖3,6

𝑖4,2

𝑖5,2 𝑖5,3

…

𝑖1 𝑖5 𝑖8

ො𝑦1
1 ො𝑦2

1 ො𝑦3
1 ො𝑦4

1 ො𝑦5
1 ො𝑦6

1 ො𝑦7
1 ො𝑦8

1

ො𝑦1
3 ො𝑦2

3 ො𝑦3
3 ො𝑦4

3 ො𝑦5
3 ො𝑦6

3 ො𝑦7
3 ො𝑦8

3

ො𝑦1
2 ො𝑦2

2 ො𝑦3
2 ො𝑦4

2 ො𝑦5
2 ො𝑦6

2 ො𝑦7
2 ො𝑦8

2

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

Solution: add more samples!

• Add extra samples

• Shared between mini-batches

• Sampling probability: 𝑝𝑖 ∼ supp𝛼

▪ 𝛼 = 0 → uniform

▪ 𝛼 = 1 → popularity based

• Implementation trick

▪ Sampling interrupts GPU computations

▪ More efficient in parallel

▪ Sample store (cache)

o Precompute 10-100M samples

o Resample is we used them all

Another look the loss functions

• Listwise losses on the target+negative samples
▪ Cross-entropy + softmax

o Cross-entropy in itself is pointwise

o Target should have the maximal score

o 𝑋𝐸 = − log 𝑠𝑖 , 𝑠𝑖 =
𝑒𝑟𝑖

σ𝑗=1
𝐾 𝑒

𝑟𝑗

o Unstable in previous implementation

– Rounding errors

– Fixed

▪ Average BPR-score

o BPR in itself is pairwise

o Target should have higher score than all negative samples

o 𝐵𝑃𝑅 = −
1

𝐾
σ𝑗=1

𝐾 log 𝜎 𝑟𝑖 − 𝑟𝑗

▪ TOP1 score

o Heuristic loss, idea is similar to the average BPR

o Score regularization part

o 𝑇𝑂𝑃1 =
1

𝐾
σ𝑗=1

𝐾 𝜎 𝑟𝑗 − 𝑟𝑖 + 𝜎 𝑟𝑗
2

• Earlier results
▪ Similar performance

▪ TOP1 is slightly better

Unexpected behaviour of pairwise losses

• Unexpected behaviour
▪ Several negative samples → good results

▪ Many negative samples → bad results

• Gradient (BPR wrt. target score)

▪
𝜕𝐿𝑖

𝜕𝑟𝑖
=

1

𝐾
σ𝑗=1

𝐾 1 − 𝜎 𝑟𝑖 − 𝑟𝑗

• Irrelevant negative sample
▪ Whose score is already lower than 𝑟𝑖

o Changes during training

▪ Doesn’t contribute to optimization: 1 − 𝜎 𝑟𝑖 − 𝑟𝑗 ∼ 0

▪ Number of irrelevant samples increases as training progresses

• Averaging with many negative samples → gradient vanishes
▪ Target will be pushed up for a while

▪ Slows down as approaches the top

▪ More samples: slows down earlier

Pairwise-max loss functions

• The target score should be higher than the

maximum score amongst the negative samples

• BPR-max

▪ 𝑃 𝑟𝑖 > 𝑟MAX|𝜃 = σ𝑗=1
𝐾 𝑃 𝑟𝑖 > 𝑟𝑗 𝑟𝑗 = 𝑟MAX, 𝜃 𝑃 𝑟𝑗 = 𝑟MAX|𝜃

▪ Use continuous approximations

o 𝑃 𝑟𝑖 > 𝑟𝑗 𝑟𝑗 = 𝑟MAX, 𝜃 = 𝜎 𝑟𝑖 − 𝑟𝑗

o 𝑃 𝑟𝑗 = 𝑟MAX|𝜃 = softmax 𝑟𝑘 𝑘=1
𝐾 =

𝑒
𝑟𝑗

σ𝑘=1
𝐾 𝑒𝑟𝑘

= 𝑠𝑗

– Softmax over negative samples only

▪ Minimize negative log probability

▪ Add ℓ2 score regularization

• 𝐿𝑖 = − log σ𝑗=1
𝐾 𝑠𝑗𝜎 𝑟𝑖 − 𝑟𝑗 + 𝜆 σ𝑗=1

𝐾 𝑟𝑗
2

Gradient of pairwise max losses

• BPR-max (wrt. 𝑟𝑖)

▪
𝜕𝐿𝑖

𝜕𝑟𝑖
=

σ𝑗=1
𝐾 𝑠𝑗𝜎 𝑟𝑖−𝑟𝑗 1−𝜎 𝑟𝑖−𝑟𝑗

σ𝑗=1
𝐾 𝑠𝑗𝜎 𝑟𝑖−𝑟𝑗

▪ Weighted average of BPR gradients

o Relative importance of samples:
𝑠𝑗𝜎 𝑟𝑖−𝑟𝑗

𝑠𝑘𝜎 𝑟𝑖−𝑟𝑘
=

𝑒
𝑟𝑗+𝑒

𝑟𝑗+𝑟𝑘−𝑟𝑖

𝑒𝑟𝑘+𝑒
𝑟𝑗+𝑟𝑘−𝑟𝑖

o Smoothed softmax

– If 𝑟𝑖 ≫ max 𝑟𝑗, 𝑟𝑘 → behaves like softmax

– Stronger smoothing otherwise

– Uniform → softmax as 𝑟𝑖 is pushed to the top

Number of samples: training times &
performance

• Training times on GPU

don’t increase until the

parallelization limit is

reached

• Around the same place

• Significant improvements

up to a certain point

• Diminishing returns after

The effect of the α parameter

• Data & loss dependent

▪ Cross-entropy: favours lower values

▪ BPR-max: 0.5 is usually a good choice (data dependent)

▪ There is always a popularity based part of the samples

o Original mini-batch examples

o Removing these will result in higher optimal 𝛼

• CLASS dataset (cross-entropy, BPR-max)

Constrained embeddings &
offline tests

Unified item representations in GRU4Rec (1/2)

• Hidden state x 𝑊𝑦 → scores

▪ One vector for each item → „item feature matrix”

• Embedding

▪ A vector for each item → another „item feature matrix”

▪ Can be used as the input of the GRU layer instead of the one-hot

vector

▪ Slightly decreases offline metrics

• Constrained embeddings (unified item representations)

▪ Use the same matrix for both input and output embedding

▪ Unified representations → faster convergence

▪ Embedding size tied to hidden the size of the last hidden state

Unified item representations in GRU4Rec (2/2)

• Model size: largest components scale with the
items
▪ One-hot input: 𝑋

o 𝑊𝑥
0, 𝑊𝑟

0, 𝑊𝑧
0, 𝑊𝑦 → 𝑆𝐼 × 𝑆𝐻

o 𝑈ℎ
0, 𝑈𝑟

0, 𝑈𝑧
0 → 𝑆𝐻 × 𝑆𝐻

▪ Embedding input: 𝑋/2
o 𝐸, 𝑊𝑦 → 𝑆𝐼 × 𝑆𝐻

o 𝑊𝑥
0, 𝑊𝑟

0, 𝑊𝑧
0 → 𝑆𝐸 × 𝑆𝐻

o 𝑈ℎ
0, 𝑈𝑟

0, 𝑈𝑧
0 → 𝑆𝐻 × 𝑆𝐻

▪ Constrained embedding: 𝑋/4
o 𝑊𝑦 → 𝑆𝐼 × 𝑆𝐻

o 𝑊𝑥
0, 𝑊𝑟

0, 𝑊𝑧
0, 𝑈ℎ

0, 𝑈𝑟
0, 𝑈𝑧

0 → 𝑆𝐻 × 𝑆𝐻

G
R

U
 la

y
e

r

H

Ite
m

 ID

d
o

t(𝐻
,𝑊

𝑦
)

s
c

o
re

s

G
R

U
 la

y
e

r

H

Ite
m

ID
s

d
o

t(𝐻
,𝑊

𝑦
)

s
c

o
re

s

E
[Ite

m
ID

s
]

e
m

b
e

d
d

in
g

G
R

U
 la

y
e

r

H

Ite
m

ID
s

d
o

t(𝐻
,𝑊

𝑦
)

s
c

o
re

s

𝑊
𝑦

[Ite
m

ID
s

]

e
m

b
e

d
d

in
g

Offline results

• Over item-kNN

▪ +25-52% in recall@20

▪ +35-55% in MRR@20

• Over the original GRU4Rec

▪ +18-35% in recall@20

▪ +27-37% in MRR@20

• BPR-max vs. (fixed) cross-entropy

▪ +2-6% improvement in 2 of 4 cases

▪ No statistically significant difference in the other 2 case

• Constrained embedding

▪ Most cases: slightly worse MRR & better recall

▪ Huge improvements on the CLASS datasset (+18.74% in recall, +29.44% in MRR)

Online A/B tests

A/B test - video service (1/3)

• Setup

▪ Video page

▪ Recommended videos on a strip

▪ Autoplay functionality

▪ Recommendations are NOT recomputed if the user clicks on any of

the recommended videos or autoplay loads a new video

▪ User based A/B split

• Algorithms

▪ Original algorithm: previous recommendation logic

▪ GRU4Rec next best: N guesses for the next item

▪ GRU4Rec sequence: sequence of length N as the continuation of

the current session

o Greedy generation

A/B test - video service (2/3)

• Technical details
▪ User based A/B split

▪ GRU4Rec serving from a single GPU using a single thread

o Score computations for ~500K items in 1-2ms (next best)

▪ Constant retraining

o GRU4Rec: ~1.5 hours on ~30M events (including data collection and
preprocessing)

o Original logic: different parts with different frequency

▪ GRU4Rec falls back to the original logic if it can’t recommend or times
out

• KPIs (relative to the number of recommendation requests)
▪ Watch time

▪ Videos played

▪ Recommendations clicked

• Bots and power users are excluded from the KPI
computations

A/B test - video service (3/3)

A/B test – long term effects (1/3)

• Watch time

0.96

0.98

1

1.02

1.04

1.06

R
e

l.
 i

m
p

ro
v

e
m

e
n

t
(w

a
tc

h
 t

im
e

 /
 r

e
c)

Next best

Sequence

W
a

tc
h

 t
im

e
 /

 r
e

c

Baseline

Next best

Sequence

A/B test – long term effects (2/3)

• GRU4Rec: strong generalization capabilities

▪ Finds hidden gems

▪ Unlike counting based approaches

o Not obvious in offline only testing

• Feedback loop

▪ Baseline trains also sees the feedback generated for recommendations of other groups

▪ Learns how to recommend hidden gems

• GRU4Rec maintains some lead

▪ New items are constantly uploaded

• Comparison of different countries

W
a

tc
h

 t
im

e
 /

 r
e

c
(i

n
cr

e
a

se
)

A/B test – long term effects (3/3)

• Videos played

▪ Next best and sequence switched places

▪ Sequence mode: great for episodic content, can suffer

otherwise

▪ Next best mode: more diverse, better for non-episodic

content

▪ Feedback loop: next best learns some of the episodic

recommendations

1

1.01

1.02

1.03

1.04

1.05

1.06

R
e

la
ti

v
e

 i
m

p
ro

v
e

m
e

n
t

(v
id

e
o

s
p

la
y

e
d

 /
 r

e
c)

Next best

Sequence

A/B test - online marketplace

• Differences in setup

▪ On home page

▪ Next best mode only

▪ KPI: CTR

• Items have limited lifespan

▪ Will GRU4Rec keep its 19-20% lead?

C
T

R Baseline

GRU4Rec

Thank you!
Q&A

Check out the code (free for research):
https://github.com/hidasib/GRU4Rec

Read the preprint: https://arxiv.org/abs/1706.03847

https://github.com/hidasib/GRU4Rec
https://arxiv.org/abs/1706.03847

	Slide 1: GRU4Rec v2 Recurrent neural networks with top-k gains for session-based recommendations
	Slide 2: At a glance
	Slide 3: GRU4Rec overview
	Slide 4: Context: session-based recommendations
	Slide 5: Preliminaries
	Slide 6: Recurrent Neural Networks
	Slide 7: GRU4Rec
	Slide 8: Negative sampling & loss function design
	Slide 9: Negative sampling
	Slide 10: Mini-batch based negative sampling
	Slide 11: Solution: add more samples!
	Slide 12: Another look the loss functions
	Slide 13: Unexpected behaviour of pairwise losses
	Slide 14: Pairwise-max loss functions
	Slide 15: Gradient of pairwise max losses
	Slide 16: Number of samples: training times & performance
	Slide 17: The effect of the alpha parameter
	Slide 18: Constrained embeddings & offline tests
	Slide 19: Unified item representations in GRU4Rec (1/2)
	Slide 20: Unified item representations in GRU4Rec (2/2)
	Slide 21: Offline results
	Slide 22: Online A/B tests
	Slide 23: A/B test - video service (1/3)
	Slide 24: A/B test - video service (2/3)
	Slide 25: A/B test - video service (3/3)
	Slide 26: A/B test – long term effects (1/3)
	Slide 27: A/B test – long term effects (2/3)
	Slide 28: A/B test – long term effects (3/3)
	Slide 29: A/B test - online marketplace
	Slide 30: Thank you! Q&A

