
Enhancing Matrix Factorization Through Initialization for
Implicit Feedback Databases

Balázs Hidasi
Gravity R&D Ltd.

balazs.hidasi@gravityrd.com
Budapest University of Technology and

Economics
hidasi@tmit.bme.hu

Domonkos Tikk
Gravity R&D Ltd.

domonkos.tikk@gravityrd.com

ABSTRACT
The implicit feedback based recommendation problem—
when only the user history is available but there are no
ratings—is a much harder task than the explicit feed-
back based recommendation problem, due to the inher-
ent uncertainty of the interpretation of such user feed-
backs. Still, this practically important recommendation
task received less attention and therefore there are only
a few common implicit feedback based algorithms and
benchmark datasets. This paper focuses on a common
matrix factorization method for the implicit problem and
investigates if recommendation performance can be im-
proved by appropriate initialization of the feature vec-
tors before training. We present a general initialization
framework that preserves the similarity between entities
(users/items) when creating the initial feature vectors,
where similarity is defined using e.g. context or meta-
data information. We demonstrate how the proposed
initialization framework can be coupled with MF algo-
rithms. The efficiency of the initialization is evaluated
using various context and metadata based similarity con-
cepts on two implicit variants of the MovieLens 10M
dataset and one real life implicit database. It is shown
that performance gain can attain 10% improvement in
recall@50 and in AUC@50.

Author Keywords
Recommender systems, Implicit feedback, Initialization,
Similarity, Context information

ACM Classification Keywords
I.2.6 [Artificial Intelligence]: Learning - Parameter Learn-
ing

General Terms
Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CaRR 2012, February 14, 2012, Lisbon, Portugal.
Copyright 2012 ACM 978-1-4503-1192-2/12/02...$10.00.

INTRODUCTION
Recommender systems identify specific content that matches
users’ personal interests within huge content collections.
The relevance of an item (the unit of content) with re-
spect to a user is predicted by recommender algorithms;
items with the highest prediction scores are displayed to
the user.

A typical classification [5] divides recommender algo-
rithms into two main approaches: the content based fil-
tering (CBF) and the collaborative filtering (CF). Con-
tent based filtering algorithms use user metadata (e.g.
demographic data) and item metadata (e.g. author,
genre, etc.) and try to predict the preference of the
user based on these attributes. In contrast, collabora-
tive filtering methods do not use metadata, but only
data of user–item interactions. Depending on the na-
ture of the interactions, algorithms can also be classified
into explicit and implicit feedback based methods. In
the former case, users provide explicit information on
their item preferences, typically in form of user ratings.
In the latter case, however, users express their item pref-
erences only implicitly, as they regularly use an online
system; most typical implicit feedback types are viewing
and purchasing. Obviously, implicit feedback data is less
reliable as we will detail later. CF algorithms proved to
be more accurate than CBF methods, if sufficient prefer-
ence data is available; for a quantification of sufficiency,
see e.g. [11]. If this does not hold, the so-called cold-start
problem occurs.

In the last few years, latent factor based CF methods
gained enhanced popularity, because they were found to
be much more accurate in the Netflix Prize, a community
contest launched in late 2006 that provided for a long
term the largest explicit benchmark dataset (100M rat-
ings) [2]. Latent factor methods build generalized models
that intend to capture user preference. These algorithms
represent each user and item as a feature vector and
the rating of user u for item i is predicted as the scalar
product of these vectors. Different matrix factorization
(MF) methods are often used to compute these vectors,
which approximate the partially known rating matrix us-
ing alternating least squares (ALS) [1], gradient descent
method [19], coordinate descent method [12], conjugate
gradient method [21], singular value decomposition [8],

or a probabilistic framework [16].

CF methods are able to provide accurate recommenda-
tions if enough feedback is available. In a few application
areas, such as movie rental, travel applications, video
streaming, users have motivation to provide ratings to
obtain better service. In general, however, users of on-
line e-commerce shops or services do not tend to provide
ratings on items even if such an option is available, be-
cause (1) when purchasing they have no information on
their satisfaction rate (2) they are not motivated to re-
turn later to the system to do so. In such cases, user
preferences can only be inferred by interpreting user ac-
tions (also called events). For instance, a recommender
system may consider the navigation to a particular prod-
uct page as an implicit sign of preference for the item
shown on that page [15]. The user history specific to
items are thus considered as implicit feedback on user
taste. Note that the interpretation of implicit feedback
data may not necessarily reflect user satisfaction which
makes the implicit feedback based preference modeling a
much harder task. For instance, a purchased item could
be disappointing for the user, so it might not mean a
positive feedback. We can neither interpret missing nav-
igational or purchase information as negative feedback,
that is such, information is not available.

Despite its practical importance, this harder but more
realistic task have been studied less. The implicit alter-
nating least squares (iALS) method [6] is considered the
seminal work in this area, which also cast the problem
to a latent factor model and keeps its computational ef-
ficiency given implicit user feedback using “the implicit
trick” (see Section Related work).

In this paper we examine the importance of the initial-
ization of this iALS algorithm. We show that if the
usual random or zero initialization is replaced by a sim-
ilarity based version, the model performance improves
significantly. We propose a matrix factorization based
initialization method which integrates additional, pos-
sibly external, information sources—we performed ex-
periments with context and metadata—to calculate the
initial weights in the model. The proposed initialization
methodology can be combined with arbitrary implicit
feedback matrix factorization method (see e.g. [12], [21]).

The main contributions of this papers are: (1) along a
simple idea we propose a general concept of initializing
matrix factorization methods; (2) we propose a novel
method (SimFactor) that enables to improve the quality
of the initial vectors; (3) we run experiments with a large
variety of initialization settings using different types of
additional information sources on MovieLens 10M and
on a real life implicit feedback grocery datasets.

The rest of the paper is organized as follows. Related
work describes the iALS algorithm and presents cur-
rently used initialization approaches. The concept of
our initialization methods is described in Method. Here
we also describes the SimFactor algorithm that can ap-

proximate the similarities between entities efficiently us-
ing feature vectors. In Results we present the results
of our experiments with different initialization methods.
Finally Conclusion sums up this work.

RELATED WORK
We first present the iALS algorithm [6] as our experi-
ments revolve around this matrix factorization algorithm.

We will use the following notation in this work: N is
number of users, M is number of items, K denotes the
number of features, R is rating matrix, P and Q are user
and item feature matrices.

The implicit task is solved in iALS by a weighted matrix
factorization. Instead of the R matrix, an R(p) (pref-
erence) matrix is constructed in a way that the (u, i)
element of the matrix is 1 only if user u has at least one
event on item i, otherwise 0. It is important to note
that this R(p) matrix is dense unlike the R matrix of
the explicit problem (but R(p) contains a lot of zero ele-
ments). A W weight matrix is also created: if the (u, i)
element of R(p) is 0 then the (u, i) element of W is 1,
otherwise it is greater than 1. The specific value can be
computed based on the number and type of events be-
tween user u and item i. The weights can be computed
in several ways. This decomposition of the R matrix can
be interpreted as that the presence of an event (e.g. buy)
provide more reliable information on the user preference
than the absence of an event. In other words, we can be
more confident in our assumption (buy = like) in case of
positive implicit feedbacks. We model this by assigning
(much) greater weight to positive implicit feedback than
to negative one.

Since the R(p) matrix is dense, any algorithm that scales
with the number of ratings can not solve this problem
efficiently because the number of “implicit ratings” is
N × M . Given that the density of the rating matrix
is usually below 1 %, the naive implementation would
require several orders of magnitude more computation
time compared to the explicit case, which scales linearly
with the number of ratings.

In [6], an “implicit trick” for ALS is proposed to brake
down the computational time. ALS approximates the
matrix R as the product of two lower rank matrices,
R ≈ PQ, and performs a series of weighted linear regres-
sions. First, matrices P and Q are initialized with ran-
dom values. Then we fix matrix Q and compute each col-
umn of matrix P using weighted linear regression (mini-

mizing (R
(p)
u,•−(P•,u)TQ)W (u)(R

(p)
u,•−(P•,u)TQ)T , where

W (u) is a M ×M diagonal matrix and W
(u)
i,i = Wu,i).

Then, matrix P is fixed and the columns of Q are com-
puted analogously.

The bottleneck in computing a column of P comes from
the computation of the QW (u)QT that is naively done
in O(K2M). However, QW (u)QT can be rewritten as
QQT + Q(W (u) − I)QT (I is the identity matrix), from

which QQT can be precalculated. Because (W (u) − I)
has only a few non-zero elements, the cost of computing
Q(W (u)−I)QT is only O(K2nu) where nu is the number
of non-zero element in the uth row of R(p). Hence, the
total cost (all N column) of the computation of P is pro-
portional with the number of positive implicit feedback
instead of number of all entries in the rating matrix.

The importance of proper initialization was recognized
for some matrix factorization algorithms like the Non-
negative Matrix Factorization (NMF). It was shown in
[17] that a good initialization can improve the speed and
accuracy of the algorithms, as it can produce faster con-
vergence to an improved local minimum. The rich lit-
erature of NMF initialization includes centroid methods
[10], spherical k-means clustering methods [23, 24] that
provides low rank representation [4], SVD [3] and sum
of randomly selected feature vectors [10]. It is common
in all of these methods that they use the same data for
initialization and for training the NMF.

In collaborative filtering algorithms, feature weights are
typically initialized with small random weights [13, 20].
Certain works report on some parameterized randomiza-
tion, drawing the random numbers from a normal dis-
tribution [22], or defining adjustable lower and upper
bounds separately for the item and user weights [20]. To
the best of our knowledge, more sophisticated initializa-
tion approaches, using external data sources have not
been proposed so far.

METHOD
Most of the MF methods are iterative algorithms that
are started from a random point: the item and user fea-
ture matrices are initialized randomly. After some iter-
ations these methods converge to a local optimum that
depends on the starting point. Our hypothesis is that
appropriate initialization of feature vectors yields that
MF methods will produce more accurate feature vectors
and therefore give more accurate predictions.

When investigating the feature vectors of accurate MF
models, one can observe similar items (e.g. items be-
longing to the same product category, or episodes of a
movie series) have similar item feature vectors. This sug-
gest that similarity-based initialization of feature vectors
may result in more appropriate models. The calculation
of the initial item and user feature vectors should be ob-
viously aligned with the learning algorithm applied. To
do this, first we have to define the similarity between
entities (items, users), which depends on the similarity
function and on the available item, user and transac-
tional data. In this paper we use cosine similarity as
similarity function for simplicity, but this can be substi-
tuted by any other similarity metric. As for the available
data, we can make use of any of the following data in our
experiments:

• Item metadata vectors: let us consider an indexed set
of metadata tags, which contains all the possible tags

that occur in item metadata (can be textual or cat-
egorical). The item metadata vector contains a non-
zero value in the ith position if the ith tag occurs in
item’s metadata. One can apply various weighting
schemes (e.g.: tfidf) to determine the elements of the
vectors.

• User/Item event vectors: a user event vector of M
length indicates with a non-zero values for which item
the user has at least one event (analog for items).

• User/Item context state vectors: let us define the set of
context states (C) as the possible combination of val-
ues of context variable. Here we consider only categor-
ical context variables with finite range. For instance
if we take seasonality as context, and a season is a
week and time bands are days, then we have 7 context
states. When more than one context variable is used
then the context states are the Descartes-product of
individual context values. I.e. if additionally we store
in another context variable if the purchase was made
online or offline, then we have 14 context states. Then
the ith element in the user context state vector is non-
zero if the user has at least one event in the ith context
state (analog for items).

• User/Item context-event vectors: the user context-event
vectors have length C ·M ; each coordinate represents
whether user has events on the given item in the given
context state (analog for items).

Remark that most of these vectors are typically very
sparse, except context state vectors with few context
variables. Note that in each of the above cases, one
has several choices in creating the item/user description
vectors from the raw data: vectors may be binary, may
contain event counters, furthermore one may apply nor-
malization or a weighting scheme.

We assemble a matrix, D, from the appropriate input
vectors (row-wise), which is referred to as the descrip-
tion of the items (DI) or users (DU). For this we select
an arbitrary but single data source from the above op-
tions; e.g., we use the item context state data vectors to
form D. In order to make use of the description as ini-
tial weights in a matrix factorization method, one should
compress them to be compliant with the feature size of
the MF model. This can be performed by any dimension
reduction techniques like PCA [7], matrix factorization,
auto-associative MLP [9], etc. These methods minimize
the information loss at the compression and simultane-
ously perform noise reduction.

In this paper we use two methods for compression. The
first is a simple matrix factorization, the weighted ALS,
that minimizes the weighted squared error of the predic-
tions by fixing one of the feature matrices and computing
the rows of the other by using weighted linear regression.
When factorizing item description, we only keep the item
feature matrix after the factorization process (analog for
user description), which is then readily used as initial
feature vectors in the iALS algorithm.

Our starting hypothesis was that description vectors char-
acterize well the similarities between entities. Therefore
the relation of similarities (e.g. ratios, order, etc.) be-
tween original description vectors should be carried over
to the compressed description vectors. Next we intro-
duce the SimFactor compression method that is able to
preserve the relations between the original similarities in
a much larger extent than ALS.

SIMFACTOR ALGORITHM
As noted above, standard dimension reduction techniques
may distort the system of similarities between the enti-
ties. One could design a method that keeps this property
by starting from the similarity matrix of the users/items.
The problem with such an approach is that it requires the
precomputation of the entire similarity matrix, which is
computationally very inefficient. Further, this solution
does not scale well, because the matrix has to be stored
in memory the sake of efficient computation. According
to our test, even when sparse data structures are used
for storing similarities, the calculation of the similarity
matrix takes a considerable amount of time, when N or
M is large.

SimFactor is a simple algorithm that compresses the de-
scription of the items while preserves the relations be-
tween the original similarities as much as possible. This
method only works for similarity metrics that can be
computed via the scalar product of two (transformed)
vectors. The most commonly used metrics in recom-
mendation systems like cosine similarity, adjusted cosine
similarity or Pearson correlation [18] can be computed
in this way. As for cosine similarity, one needs to `2-
normalize the input vectors then their scalar product will
be the same as the cosine similarity between the original
vectors. The pseudocode for SimFactor is described in
Algorithm 1 (see also Figure 1).

Algorithm 1 SimFactor

Input: D matrix that contains the item or the user
description
Output: F matrix that contains the feature vectors of
the items or users
procedure SimFactor(D)

1: D′ ← Transform(D)
2: < X,Y >← FactorizeMatrix(D′)
3: Z ← Y TY
4: < U,Λ >← EigenDecomposition(Z)
5: F ← matrix of Nentities ×Nentities size
6: for i = 1, . . . , Nentities do
7: Fi =

√
Λi,iXiU

8: end for
9: return F

end procedure

SimFactor starts with the appropriate transformation
of the description matrix (line 1; e.g. `2-normalization
when using cosine similarity). Next in line 2, a matrix

factorization is applied on the description, but in con-
trast to the method described above, both low rank ma-
trices are kept. For the matrix factorization, arbitrary
MF method can be used. Here, we applied weighted
ALS.

Description

 (D) X YT

Similarity

 Matrix
Description

 (D')

D
e
s
c
rip
tio
n

 (D
' T)

X YT

X
T

Y

U

YTY

UTΛX

X
TΛ

F

F
T

U Λ UT

Similarity

 Matrix

=

≈

Similarity

 Matrix ≈

=

Similarity

 Matrix ≈

≈

Figure 1. Concept of the matrix transformations in Sim-
Factor

The steps performed between lines 3 and 8 are also de-
picted on Figure 1. The matrix of similarities (S) is
the product of the transformed description matrix and
its transpose (S = D′D′T), while the factor matrices
(output of the MF method in line 2) approximate the
transformed description matrix (D′ ≈ XY T). There-
fore the similarity matrix can be approximated by S ≈
XY TY XT . Y TY is a K ×K symmetric (non-singular)
matrix, thus its eigen-decomposition always exists in the
following form: Y TY = UΛUT . U and Λ are K × K
matrices, the earlier contains the eigenvectors the lat-
ter is singular and has the eigenvalues in its diagonal.
Λ can be written as the product of two identical matri-
ces denoted with

√
Λ.
√

Λ is also diagonal and contains
the square roots of the eigenvalues. At this point our
approximation of the similarity matrix looks like this:

S ≈ XU
√

Λ
√

ΛUTXT . Introducing the Nentities × K
matrix F = XU

√
Λ, this can be rewritten S ≈ FFT .

In F , every row is a feature vector for an entity and
the scalar product of the ith and jth rows approximates
the similarity between the corresponding entities. This
way SimFactor produces low-rank feature vectors that
try to preserve the original similarity values. We can use
these feature vectors as the initial features in the iALS
algorithm. The complexity of SimFactor—in addition
to the initial transformation and matrix factorization—
is O(K2N + K3 + K2M), where the subsequent terms
correspond to the calculation Y TY , finding the eigen-
decomposition and calculating F = XU

√
Λ, respectively.

We found that, in practice, this cost is negligible com-
pared to the cost of the initial matrix factorization in
line 2.

RESULTS
We used two datasets for experimentation. The first
dataset is the MovieLens 10M [14] that was transformed
into an implicit feedback dataset. We used two different
transformations: (1) keeping only the 5 star ratings and
(2) keeping ratings with values 4 and above as positive
feedbacks. We used the last 20 days for testing (from
08/12/2008) and the rest for training. As the available
metadata is not sufficient we did not use the metadata for
initialization with the MovieLens database. The second
dataset contains purchase events of an online grocery
store. The number of events is slightly above 6.24 million
targeted on 17,000 items (of them 14,000 has at least one
event). We used all but the last month’s data for training
and the last month for testing.

We used various data sources when creating the descrip-
tion matrix (see details in Method). For context infor-
mation, we chose seasonality because the time stamp
is available in almost every dataset. On seasonality we
mean that we define periodicity and divide it into smaller
time intervals called time bands. For example, hours of
a day can be time bands of a day, or the weekdays and
the weekend can be time bands of a week. Note that
the length of the time bands does not have to be identi-
cal. The context of an event is the time band in which
it happened. We used different periods and time bands
and kept only the best results.

Our first experiment compared weighted ALS and Sim-
Factor to characterize their similarity preserving capabil-
ity. We draw randomly 2 times 100 000 entity pairs, cal-
culated the original similarity values and measured the
RMSE (root mean square error) of the similarity value
prediction as well as the improvement in the relation
of the pairs. Next, we characterized difference between
similarity preserving using ratio improvement calculated
as: ∑100 000

i1,i2=1

(
si1/si2 − s′′i1/s

′′
i2

)2∑100 000
i1,i2=1

(
si1/si2 − s′i1/s

′
i2

)2 − 1

where prime denotes the prediction of SimFactor and
double prime denotes the prediction of ALS.

The results in Table 1 show that SimFactor was more
accurate in every experiment. The improvement varies
between 10–50%. In addition to better accuracy, Sim-
Factor also preserves the original relations of the simi-
larities better than the weighted ALS. The performance
metrics depends greatly on the description matrix.

We used recall@50 as primary evaluation metric for the
main experiments, which is the fraction of the proportion
of relevant items among the top50 (ranked) recommen-
dations for the user and the user’s events in the test set.
Items considered relevant to a user if the user has at
least one event on that item in the test set. Recall@50
is an important measure in practical applications as the
user usually sees maximum the top few items (50 items
could be seen on multiple pages during a visit). We also
present the area under the precision-recall curve (from
1 . . . 50) as a secondary metric.

The experiments started by optimizing the hyperparam-
eters of an iALS algorithm. We used low-factor models
as they can be used in practice as well. Then we run
multiple experiments with different random initializa-
tions and chose the best result as the baseline. We used
weighted ALS and SimFactor (that also uses a weighted
ALS as its first step) to create the initial feature. Note
that since iALS is an alternating method that discards
the results of previous computations when calculating
the feature vectors. we can not initialize both item and
user features at once as one of them will be discarded
in the first step. We ran multiple experiments for each
input data type for the initialization and kept only the
best one per input data type.

Table 2 sums the results of our experiments. The results
on the grocery database are the most relevant as that
database is originally implicit feedback based. The result
clearly show the superiority of the SimFactor method
over standard factorization as the top performing initial-
izations used SimFactor. We observed the same when ex-
perimenting on MovieLens (5star), but on the MovieLens
(4star+) SimFactor is less dominant. This can be argued
by the additional noise being present in the MovieLens
(4star+) datasets (note that “implicitization” was per-
formed in a non-personal way and user may use different
ratings scales).

We want to point out that the top performing meth-
ods on every dataset use contextual information for ini-
tialization. Both context state and context-event infor-
mation is used amongst them, but on the grocery and
MovieLens (5star) data, the context state based methods
are the dominant. This suggest that context informa-
tion, like seasonality, can efficiently discriminate between
entities, and this can be exploited in weight initialization:
Users have routines and people with similar routines are
similar and might have similar taste. Similarly, differ-
ent item types are typically consumed in different time

Table 1. Accuracy of the similarity prediction

Input data Method RMSE RMSE Improvement Ratio Improvement

MovieLens 10M (5 star ratings)

Item context state ALS 0.2055
45.79% 70.75%SimFactor 0.1114

User context state ALS 0.3345
11.66% 79.60%SimFactor 0.2955

Item context-event ALS 0.0568
22.68% 2.46%SimFactor 0.0439

User context-event
ALS 0.1631

33.13% 64.43%SimFactor 0.1091

Item event data ALS 0.0593
23.98% 87.47%SimFactor 0.0451

User event data ALS 0.1285
32.03% 86.46%SimFactor 0.0874

MovieLens 10M (4 star ratings and above)

Item context state
ALS 0.2219

31.55% 74.58%SimFactor 0.1519

User context state ALS 0.2469
12.40% 61.29%SimFactor 0.2163

Item context-event ALS 0.0317
35.28% 31.82%SimFactor 0.0205

User context-event ALS 0.0835
34.64% 83.19%SimFactor 0.0546

Item event data
ALS 0.0658

2.84% 73.53%SimFactor 0.0639

User event data ALS 0.1803
14.51% 37.39%SimFactor 0.1542

grocery dataset

Item context state
ALS 0.3254

52.36% 81.74%SimFactor 0.1550

User context state ALS 0.1178
10.81% 18.69%SimFactor 0.1050

Item context-event ALS 0.0314
16.86% 71.80%SimFactor 0.0261

User context-event ALS 0.1518
26.22% 62.55%SimFactor 0.1120

Item event data
ALS 0.0492

13.39% 9.61%SimFactor 0.0427

User event data ALS 0.1930
48.70% 64.08%SimFactor 0.0990

Item metadata ALS 0.2709
12.38% 38.39%SimFactor 0.2374

bands; for example adult programs mostly viewed late
night. The distribution of the events for an entity in the
time bands seems to be an efficient descriptor.

The largest improvement for the grocery dataset is 5.71%
in the recall and the fifth best method improves it by
4.04%. Considering that the cost of the initialization is
small and that this improvement can be translated into
increased profit, we believe that the initialization of the
algorithm is beneficial.

CONCLUSION
In this paper we proposed a general framework for ini-
tializing MF algorithms. Our hypothesis was that initial-
izing item and user models with weights that reflect the
similarity between entities will improve algorithm perfor-
mance when compared to starting from a random state.

This method also allows us to easily incorporate addi-
tional information like context or metadata information
into the MF framework.

Our proposed SimFactor algorithm can efficiently imple-
ment the general idea. We found that SimFactor pre-
serves the original similarities and their relations better
than other MF methods which makes this method more
suitable for our goals. The additional complexity of Sim-
Factor is its negligible additional cost when compared to
an arbitrary MF method.

Using different data sources to compute similarity can
greatly affect the performance gain observed with ini-
tialization. We found that the greatest improvement
can be achieved by using the context information (we
experimented with seasonality). Context separates the
entities more appropriately than any other information

Table 2. Results of the top10 performing initialization methods on both datasets

Data type Method Recall@50 Improvement AUC@50 Improvement
to baseline to baseline

MovieLens 10M (5 star ratings)

Item context state SimFactor 0.1413 10.00% 1.4512 ∗ 10−3 9.85%
User context state SimFactor 0.1403 9.17% 1.4000 ∗ 10−3 5.98%
Item context-event SimFactor 0.1403 9.17% 1.3526 ∗ 10−3 2.39%
Item context-event MF 0.1403 9.17% 1.3377 ∗ 10−3 1.26%
Item context state MF 0.1403 9.17% 1.4596 ∗ 10−3 10.49%
Item event data SimFactor 0.1392 8.33% 1.3754 ∗ 10−3 4.11%
User context-event MF 0.1392 8.33% 1.3754 ∗ 10−3 4.11%
User context state MF 0.1392 8.33% 1.4006 ∗ 10−3 6.02%
User context state SimFactor 0.1382 7.50% 1.3899 ∗ 10−3 5.21%
Item event data MF 0.1381 7.50% 1.3725 ∗ 10−3 3.89%
Random initialization (baseline) 0.1285 N/A 1.3211 ∗ 10−3 N/A

MovieLens 10M (4 star ratings and above)

User context-event SimFactor 0.08636 5.67% 1.1612 ∗ 10−3 5.24%
Item context-event MF 0.08574 4.91% 1.1537 ∗ 10−3 4.56%
User context-event MF 0.08559 4.73% 1.1672 ∗ 10−3 5.79%
Item context state MF 0.08528 4.35% 1.1671 ∗ 10−3 5.78%
Item context-event SimFactor 0.08512 4.16% 1.1486 ∗ 10−3 4.09%
User context state MF 0.08497 3.97% 1.1390 ∗ 10−3 3.23%
User context state SimFactor 0.08466 3.59% 1.1345 ∗ 10−3 2.82%
User event data MF 0.08451 3.40% 1.1670 ∗ 10−3 5.77%
Item event data SimFactor 0.08435 3.21% 1.1265 ∗ 10−3 2.10%
User event data SimFactor 0.08435 3.21% 1.1294 ∗ 10−3 2.35%
Random initialization (baseline) 0.08172 N/A 1.1034 ∗ 10−3 N/A

grocery dataset

User context state SimFactor 0.1508 5.71% 1.0692 ∗ 10−2 10.19%
User context state MF 0.1496 4.88% 1.0675 ∗ 10−2 10.01%
User context-event SimFactor 0.1488 4.30% 1.0367 ∗ 10−2 6.83%
User event data SimFactor 0.1485 4.12% 1.0626 ∗ 10−2 9.50%
User context-event MF 0.1484 4.04% 1.0408 ∗ 10−2 7.25%
Item event data SimFactor 0.1474 3.29% 1.0169 ∗ 10−2 4.79%
Item metadata MF 0.1472 3.15% 1.0319 ∗ 10−2 6.34%
Item context-event MF 0.1469 2.97% 1.0280 ∗ 10−2 5.94%
Item context state MF 0.1465 2.67% 1.0222 ∗ 10−2 5.35%
Item context state SimFactor 0.1464 2.64% 1.0199 ∗ 10−2 5.10%
Random initialization (baseline) 0.1427 N/A 0.9809 ∗ 10−2 N/A

we examined and therefore it can not be neglected. An
additional 4–6% improvement compared to the random
initialization could be achieved through appropriate ini-
tialization on a real life dataset using SimFactor and only
3–3.5% when using MF. The similarity preserving prop-
erty of the SimFactor can be a disadvantage when the
description matrix is too noisy, that is the description
matrix does not capture item or user similarities.

Future work includes experimentation with other simi-
larity metrics (e.g. Pearson correlation instead of cosine
similarity) and the combination of various context infor-
mation into a single similarity measure.

The utility, that is, whether 4–6% improvement worths
the time of the initialization depends on many factors.
The main cost factor is the MF step in SimFactor whose

complexity greatly depends on the description data and
the parameters of the factorization. The number of con-
text states is much lower than the number of items/users
and therefore the description matrix is relatively small,
thus the initial MF step is relatively fast. Furthermore,
the context state based initialization turned out to be the
most efficient one, which suggest that context based ini-
tialization has positive utility in real-world recommender
applications.

REFERENCES
1. Bell, R. M., and Koren, Y. Scalable collaborative

filtering with jointly derived neighborhood
interpolation weights. In Proc of. ICDM-07, 7th

IEEE Int. Conf. on Data Mining (Omaha,
Nebraska, USA, 2007), 43–52.

2. Bennett, J., and Lanning, S. The Netflix Prize. In
Proc. of KDD Cup Workshop at SIGKDD-07, 13th

ACM Int. Conf. on Knowledge Discovery and Data
Mining (San Jose, California, USA, 2007), 3–6.

3. Boutsidis, C., and Gallopoulos, E. Svd based
initialization: A head start for nonnegative matrix
factorization, 2007.

4. Dhillon, I. S., and Modha, D. S. Concept
decompositions for large sparse text data using
clustering. In Machine Learning (2000), 143–175.

5. Herlocker, J. L., Konstan, J. A., Terveen, L. G.,
and Riedl, J. T. Evaluating collaborative filtering
recommender systems. ACM Transactions on
Information Systems 22, 1 (2004), 5–53.

6. Hu, Y., Koren, Y., and Volinsky, C. Collaborative
filtering for implicit feedback datasets. In Proc. of
ICDM-08, 8th IEEE Int. Conf. on Data Mining
(Pisa, Italy, December 15–19, 2008), 263–272.

7. Jolliffe, I. Principal Component Analysis. Springer
Verlag, 1986.

8. Koren, Y. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proc.
of the 14th ACM Int. Conf. on Knowledge
Discovery and Data Mining (SIGKDD’08) (Las
Vegas, Nevada, USA, 2008), 426–434.

9. Kramer, M. A. Nonlinear principal component
analysis using autoassociative neural networks.
AIChE Journal 37, 2 (1991), 233–243.

10. Langville, A. N., Meyer, C. D., and Albright, R.
Initializations for the nonnegative matrix
factorization, 2006.

11. Pilászy, I., and Tikk, D. Recommending new
movies: Even a few ratings are more valuable than
metadata. In Proc. of the 3rd ACM Conf. on
Recommender Systems (Recsys’09), ACM (New
York, NY, USA, 2009), 93–100.

12. Pilászy, I., Zibriczky, D., and Tikk, D. Fast
ALS-based matrix factorization for explicit and
implicit feedback datasets. In Proc. of the 4th ACM
Conf. on Recommender Systems (RecSys’10), ACM
(Barcelona, Spain, 2010), 71–78.

13. Rendle, S., and Schmidt-Thieme, L.
Online-updating regularized kernel matrix
factorization models for large-scale recommender
systems. In Proc. of RecSys-08: ACM Conf. on
Recommender Systems, ACM (New York, NY,
USA, 2008), 251–258.

14. Resnick, P., Iacovou, N., Suchak, M., Bergstrom,
P., and Riedl, J. Grouplens: an open architecture
for collaborative filtering of netnews. In Proc. of
CSCW-94, 4th ACM Conf. on Computer Supported
Cooperative Work (Chapel Hill, North Carolina,
USA, 1994), 175–186.

15. Ricci, F., Rokach, L., and Shapira, B. Introduction
to recommender systems handbook. In
Recommender Systems Handbook, F. Ricci,
L. Rokach, B. Shapira, and P. B. Kantor, Eds.,
Artificial Intelligence. Springer US, 2011, 1–35.

16. Salakhutdinov, R., and Mnih, A. Probabilistic
matrix factorization. In Advances in Neural
Information Processing Systems 20, J. C. Platt,
D. Koller, Y. Singer, and S. Roweis, Eds. MIT
Press, Cambridge, Massachusetts, USA, 2008.

17. Smilde, A., Bro, R., and Geladi, P. Multi-way
Analysis. Wiley, West Sussex, England, 2004.

18. Snedecor, G. W., and Cochran, W. G. Statistical
Methods, 7th ed. Iowa State University Press, 1980.

19. Takács, G., Pilászy, I., Németh, B., and Tikk, D.
Major components of the gravity recommendation
system. SIGKDD Explor. Newsl. 9 (December
2007), 80–83.

20. Takács, G., Pilászy, I., Németh, B., and Tikk, D.
Scalable collaborative filtering approaches for large
recommender systems. Journal of Machine
Learning Research 10 (2009), 623–656.

21. Takács, G., Pilászy, I., and Tikk, D. Applications of
the conjugate gradient method for implicit feedback
collaborative filtering. In RecSys’11: Proc. of the
4th ACM Conf. on Recommender Systems
(Chicago, IL, USA, October 23–27, 2011), 297–300.

22. Thai-Nghe, N., Drumond, L., Horváth, T.,
Krohn-Grimberghe, A., Nanopoulos, A., and
Schmidt-Thieme, L. Factorization techniques for
predicting student performance. In Educational
Recommender Systems and Technologies: Practices
and Challenges (ERSAT 2011). IGI Global, 2012,
1–25.

23. Wild, S., Wild, W. S., Curry, J., Dougherty, A.,
and Betterton, M. Seeding non-negative matrix
factorization with the spherical k-means clustering.
Tech. rep., 2003.

24. Wild, S. M., Curry, J. H., and Dougherty, A.
Improving non-negative matrix factorizations
through structured initialization. Pattern
Recognition 37, 11 (November 2004), 2217–2232.

	Introduction
	Related work
	Method
	SimFactor algorithm
	Results
	Conclusion
	REFERENCES

