Session-based Recommendations with Recurrent Neural Networks

Balázs Hidasi
Alexandros Karatzoglou
Linas Baltrunas
Domonkos Tikk

Session-based recommendation
Permanent cold start: where personalized recommendations fail

- **User identification**: Many sites (e.g. classifieds, video services) don’t require users to log in. Although some form of identification is possible, it is not reliable.
- **Intent/theme**: Sessions usually have a goal or a specific theme. Different sessions of the same user center around different concepts. The entire user history may not help much in identifying the user’s current needs.
- **Never/rarely returning users**: High percentage of the users of webshops come from search engines in search for some products and rarely return.

Workaround in practice
- **Item-to-item recommendations**: Recommend similar or frequently co-occurring items.

We explore item-to-session recommendations. By modeling the whole session, more accurate recommendations can be provided. We propose an RNN-based approach to model the session and provide session-based recommendations.

Gated Recurrent Unit
Hidden state is the mix of the previous hidden state and the current hidden state candidate (controlled by the update gate):

\[
\tilde{h}_t = (1 - z_t) h_{t-1} + z_t h_t
\]

The reset gate controls the contribution of the previous hidden state to the hidden state candidate:

\[
h_t = \tanh(W_{r_t} x_t + U_t h_{t-1})
\]

Reset gate: \(\tilde{h}_t = \sigma(W_{r_t} x_t + U_t h_{t-1})\)

Update gate: \(h_t = \sigma(W_{n_t} x_t + U_t h_{t-1})\)

Architecture
- **Input**: item of the actual event
- **Output**: likelihood for every item for being the next one in the event stream

Experiments

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>Items</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSC15</td>
<td>RecSys Challenge 2015. Clickstream data of a webshop.</td>
<td>37,483</td>
<td>7,966,257</td>
<td>7,966,257</td>
</tr>
<tr>
<td>VIDEO</td>
<td>Watch events collected from a video service platform.</td>
<td>327,929</td>
<td>2,954,816</td>
<td>2,954,816</td>
</tr>
</tbody>
</table>

Findings (Architecture, training & parameters)
- Single layer GRU performs best
- Pre/postprocessing FF layers are not needed
- Adam works better than RMSProp
- Top1 loss is better overall than other losses
- Pointwise losses (e.g. cross-entropy) are unstable
- Feeding the network earlier events of the session (i.e. reminding it) does not improve performance
- LSTM & RNN are inferior to GRU
- The number of hidden units has the highest impact on performance

Adapting GRU to the RecSys task

Session-parallel mini-batches

Motivation:
- High variance in the length of the sessions (from 2 to 100s of events)
- The goal is to capture how sessions evolve

Approach:
- Have an ordering of all sessions (e.g. random order or order by time)
- Take the first events of the first X sessions (X - mini-batch size) to form the first input mini-batch.
- The desired output is formed from the second events of the first X sessions.
- The second mini-batch (input) is formed from the second events, etc.

Sampling the output

Motivation:
- The number of items is generally high: 100,000s or even a few millions.
- Training scales with the product of the number of events, hidden units and outputs (\(O(H \times W)\)). The latter equals to the number of items.
- Models need to be trained frequently to keep up with the changes in the item catalog and user behavior.

Approach:
- For an input, the desired output is a one-hot vector over all items.
- Always compute the score for the coordinate corresponding to the desired item. Sample the others.
- Popularity based sampling: it is more likely that the lack of an event on a more popular item means negative feedback.
- Use the items of the other examples of the mini-batch as the negative examples for each event in the mini-batch. This is a form of popularity based sampling with several practical benefits.

Ranking loss

Motivation:
- The ultimate goal of recommenders is to rank the items.
- Pointwise and pairwise rankings have been applied with great success (listwise ranking is not scalable enough in practice).
- Pairwise ranking (A is preferred over B) often performs better.

Approach:
- BPR: Adapt Bayesian Personalized Ranking for multiple negative samples.
- \(L = \frac{1}{N_c} \sum_{i=1}^{N_c} \log \{ p(y_{ij} | \theta) \} \)
- Top1: This ranking loss was devised by us for this task. It is the approximation of the relative rank of the desired item. Regularization is added for the sake of stability.
- \(L = \frac{1}{N_c} \sum_{i=1}^{N_c} \sigma(x_{ij} - y_{ij}) + \alpha \sigma^2(x_{ij}) \)

Try the algorithm: https://github.com/hidasib/GRU4Rec