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ABSTRACT
Factorization based algorithms – such as matrix or tensor
factorization – are widely used in the field of recommender
systems. These methods model the relations between the en-
tities of two or more dimensions. The entity based approach
is suitable for dimensions such as users, items and several
context types, where the domain of the context is nominal.
Continuous and ordinal context dimensions are usually dis-
cretized and their values are used as nominal entities. While
this enables the usage of continuous context in factorization
methods, still much information is lost during the process.
In this paper we propose two approaches for better modeling
of the continuous context dimensions. Fuzzy event modeling
tackles the problem through the uncertainty of the value
of the observation in the context dimension. Fuzzy con-
text modeling, on the other hand, enables context-states to
overlap, thus certain observations are influenced by multiple
context-states. Throughout the paper seasonality is used as
an example of continuous context. We incorporate the mod-
eling concepts into the iTALS algorithm, without degrading
its scalability. The effect of the two approaches on recom-
mendation accuracy is measured on five implicit feedback
databases.

Categories and Subject Descriptors
I.2.6 [[Artificial Intelligence]]: Learning - Parameter Learn-
ing

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Recommender systems are information filtering tools that

help users in information overload to find interesting items.
For modeling user preferences, classical approaches either
use item metadata (content based filtering, CBF; [13]), or
user–item interactions (collaborative filtering, CF; [19]). CF
algorithms proved to be more accurate than CBF methods,
if sufficient interaction data (or events) is available [14].

Latent factor based CF methods gained popularity due to
their attractive accuracy and scalability [11]. They intend to
capture user preferences by uncovering latent features that
explain the observed user–item events (ratings). Models are
created by the factorization of the partially observed user–
item rating matrix, and the user preferences are approxi-
mated by the scalar product of the user and item factors.
Matrix factorization (MF) methods may differ in the learn-
ing method and the objective function. For learning, MF
methods may apply, e.g., alternating least squares (ALS;
[3]), stochastic gradient [20], or a probabilistic framework
[18].

The dualistic user–item based modeling concept can be
extended by considering additional information that may in-
fluence the user preferences at recommendation; such data
are together termed contextual information, or briefly con-
text [1]. The hypothesis of context-aware recommendation
systems is that the integration of context into the model
may improve the modeling capacity and accuracy.

There are several factorization algorithms that can use
one or more context dimensions besides the users and items
for both the implicit and the explicit case ([10], [17], [7], [15],
[5]). A common property of these factorization methods is
that they assume that the context dimension is categorical.
This is needed, analogously to the user and item dimensions,
also the context dimension is represented by a set of enti-
ties, to which feature vectors are assigned in the factoriza-
tion model. Generally, factorization methods are not able to
cope with continuous dimensions. However, continuous con-
text dimensions are frequent in contextual modeling. For ex-
ample time based information, such as seasonality, is one of
the most dominantly used context dimension [10]. Therefore
factorization methods need to transform continuous context
dimensions into categorical ones, but the commonly used
transformations are lossy, therefore by design decreases the
modeling capacity of the model; see also section 1.2.

In this paper, we propose two modeling approaches, fuzzy
event modeling and fuzzy context modeling, that can better
model the continuous context, yet can be embedded into the



standard factorization frameworks. The methods are fully
compatible with most factorization algorithms in the sense
that those can be easily adapted to the cope with contin-
uous dimensions using the proposed modeling approaches.
We demonstrate this on the iTALS algorithm [7]. The mod-
ifications are tested against five implicit feedback datasets.

The rest of the paper is organized as follows. Next we
briefly review the starting point of this work: section 1.2 de-
scribes the current methods for handling continuous context
dimensions in factorization methods and shows why they
fall short; section 1.3 present seasonality that will be used
as the continuous context dimension throughout the paper;
section 1.4 summarizes [7] to provide a brief introduction on
the iTALS algorithm. Fuzzy event modeling and fuzzy con-
text modeling approaches and their incorporation into the
iTALS algorithm are described section 2. Section 3 contains
the comparison of the modified and the original iTALS algo-
rithms w.r.t. recommendation accuracy. Finally, section 4
summarizes this work and implies possible future research
directions.

1.1 Notation
We will use the following notation in the rest of this paper:
• A ◦ B ◦ . . .: The Hadamard (elementwise) product of
A, B, . . . . The operands are of equal size, and the
result’s size is also the same. The element of the result
at index (i, j, k, . . .) is the product of the element of A,
B, . . . at index (i, j, k, . . .).
• Ai: The ith column of matrix A.
• Ai1,i2,...: The (i1, i2, . . .) element of tensor/matrix A.
• K: The number of features, the main parameter of the

factorization.
• D: The number of dimensions of the tensor.
• T : A D dimensional tensor that contains only zeroes

and ones (preference tensor).
• W : A tensor with the same size as T (weight/confidence

tensor).
• SX : The size of T in dimension X (e.g. X = U

(Users)).
• N+: The number of ratings (explicit case); non-zero

elements in tensor T (implicit case).

• M (X): A K × SX sized matrix. Its columns are the
feature vectors for the entities in dimension X.

1.2 Current usage of continuous context
Current factorization methods work on dimensions defined

on categorical domains (e.g. the set of item identifiers). Each
categorical value is treated as an entity in the factorization
method and is coupled with a feature vector.

Continuous context dimensions – such as time or loca-
tion based information – are widely used in recommender
systems and in factorization algorithms [10, 12]. However,
their proper modeling is mostly neglected. The continuous
domain is directly transformed into a categorical one. The
first step is the discretization of the continuous domain by
dividing it into several intervals. Then each interval is as-
signed an identifier and the set of identifiers is used as the
domain of the context dimension.

The above modeling of context dimension has the follow-
ing shortcomings:

• Context-state rigidness: The boundaries of the in-
tervals are stark. The context-state of an event is
determined by the interval it belongs to and is not

influenced by its relative location in the interval nor
by neighboring intervals. For example when the start
of the interval is at 20:00 and there are two events
with timestamps 19:58 and 20:03, then those events
are probably similar w.r.t. the context, but assigned
to different context-states. Events with context value
falling close to boundary of an interval are probably
not belonging solely to that context-state, but also to
the neighboring one.

• Context-state ordinality: The context-states are
treated independently from each other. In the contin-
uous context dimension there is an ordering defined
on the context values. Analogously in a discretized
context dimension, a coarser ordering exists between
context states. By this ordering the distance between
context states can be defined, and gradual changes
in user/item behavior according to the context can
be modeled. Intuitively, we do not expect a sudden
change in the user behavior once the clock strikes 20:00
– using the above example. By the nature of the nomi-
nal modeling of context dimension, this information is
lost. Neighboring context-states have no effect on each
other.1 The ordinality of consecutive context-states
would be desirable for continuous context dimensions.

In Section 2 we propose two approaches that tackle these
drawbacks without using full continuous factorization meth-
ods.

1.3 Seasonality
Many application areas of recommender systems exhibit

the seasonality effect, therefore seasonal data is an obvious
choice as context [12]. Strong periodicity can be observed in
most of the human activities: as people have regular daily
routines, they also follow similar patterns in TV watching
at different time of a day, they do their summer/winter va-
cation around the same time in each year. Taking the TV
watching example, it is probable that horror movies are typi-
cally watched at night and animation is watched in the after-
noon or weekend mornings. Seasonality can be also observed
in grocery shopping or in hotel reservation data.

In order to consider seasonality, first we have to define
the length of the season. The value of the dimension for an
event is the timestamp of the event modulo the length of
the season. Seasonality is a periodical continuous context,
meaning that the values of the context for two events that
are N times the season’s length apart is the same. The
length of the season depends on the data and is usually is a
hyperparameter of the modeling. To create entities for the
seasonality dimension time bands (bins) are needed to be
created in the seasons. These time bands are the entities,
i.e. the possible context-states. Time bands specify the
time resolution of a season, which is also a data dependent
hyperparameter. Time bands can be created with equal or
different length. Events are associated with the time bands
as context-states via their timestamps.

Common examples for seasonal context are the days of a
week, months of the year, or every several hours of a day.

1We note that certain similarity can be observed if the num-
ber of events is high around the boundary and thus lots of
events fall into both intervals. However this effect is ne-
glected if the intervals are long or if the density of the events
is higher inside the intervals than at the boundaries.



1.4 iTALS algorithm
The iTALS algorithm [7] is a context-aware factorization

method. It factorizes the user-item-context(s) D dimen-
sional tensor. The preferences are estimated by a three-way
model. If D = 3, the predicted preferences are calculated
as:

r̂u,i,c = 1T
(
M (U)

u ◦M (C)
c ◦M (I)

i

)
(1)

It uses pointwise preference estimation, through weighted
root mean squared error (wRMSE) based loss function:

L =

SU ,SI ,SC∑
u=1,i=1,c=1

wu,i,c (ru,i,c − r̂u,i,c)2 (2)

where wu,i,c is the weight or confidence associated with the
combination of the uth user, ith item and cth context-state.

The weights are calculated as:

wu,i,c =

{
γ · supp(u, i, c) + w0 � w0, if (u, i, c) is an event

w0, otherwise,

(3)
where supp(u, i, c) is the number of occurrences (support)
of the (u, i, c) combination in the training data. This means
that the presence of an event implies strong positive feed-
back, but lack of an event is just a very uncertain implication
of negative feedback.

The learning is via alternating least squares (ALS) and its
complexity is O(K2N+K3(SU + SI + SC)). Using approx-
imate least squares solvers the method’s complexity can be
improved to O(KN+ +K2(SU +SI +SC)), as shown in [8].
Note that in practice N+ � SU + SI + SC , otherwise the
problem is too sparse for factorization methods to handle.
Thus the first term dominates the complexity expression, if
K is small. Therefore the learning scales with K2 or K with
exact or approximate solvers respectively.

2. MODELING CONTINUOUS CONTEXT
To overcome the rigidness and ordinality problems, we

propose two approaches to model continuous context di-
mensions in the factorization framework. Instead of a new,
fully continuous factorization method we solve the aforemen-
tioned two shortcomings by proposing modeling techniques
that lessen those effects and can be relatively easily embed-
ded into existing factorization algorithms. The proposed
two methods are termed (fuzzy) event modeling and (fuzzy)
context modeling. The former is simpler and mainly targets
the rigidness problem (it has some effect on the ordinality
problem as well). The latter is more complex and targets
both drawbacks simultaneously.

2.1 Fuzzy event modeling
The rigidness of the context-states is disadvantageous, be-

cause events that take similar values in the context dimen-
sion might be associated with different context-states if the
boundary of the context-state intervals falls between them.
Thus training data on the one side of the boundary will sup-
port the model building of the first context-state, while the
training data of the other side supports the model of the
other context-state. Intuitively, the problem is caused by
the rigidness of the boundaries of the context-states’ inter-
vals and the instantaneous nature of the events.

The fuzzy event modeling approach overcomes the rigid-
ness problem by assigning a validity interval to the formerly

instantaneous events. Each event is valid in an interval of ∆
radius around its original context value (i.e. in [x−∆, x+∆],
if its original context value is x). The validity intervals may
intersect with multiple context-state intervals. Each event
is associated with all context-states whose interval intersects
with the event’s validity interval. Context-states are trained
using all events that are associated with them. However,
the context-states are trained independently from one an-
other, thus one can think of this method as cloning some of
the events that are close to the boundaries of the context-
states and distributing the clones between the neighboring
context-states. Due the duplication of events that are near
the context-state boundaries, the feature vectors of neigh-
boring context-states become similar. Note that this ap-
proach solves the ordinality problem only partially, because
the feature vectors of the context-states are trained indepen-
dently.
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Figure 1: Weighting scheme with a triangular shape
as example

This simple and straightforward approach can be easily
coupled with every factorization algorithm. To apply fuzzy
event modeling with the iTALS algorithm, the association
of events with context-states should be translated to exact
computation of preferences and confidences. There are sev-
eral ways to compute these values; here we propose the fol-
lowing two:

• Constant: The value is the same in every associated
context-state. (By preference computation the value is
1, by confidence computation it is γ ·supp(u, i, c), using
the original context-state to calculate the support.

• Weighted: The extent of the validity of an event may
vary through its validity interval. For example, the
further it is from the event’s original value, the lower
the extent of validity is. Shapes can be assigned to
the validity intervals that describe the extent of valid-
ity in each point. (E.g. normal distribution, triangle,
trapezoid, rectangle, etc.) We use the area under the
shape as weights. The weights are scaled so that the
largest of them is 1; see figure 1. The weights are
used to modify the preference and/or the confidence
by scaling them. The proposed normalization implies
that the values in the original context-state2 does not
change, but the values in the other context-state are
scaled down.

The computation of the preference and confidence is inde-
pendent, either method can be used for each and the shapes
2In practical settings, the area under the shape will be the
largest in the original context-state, therefore its weight will
there be 1.



for computing the weights do not have to be the same.
The iTALS itself requires no modification, it only needs

to be fed with the “extra” events. Therefore the scaling of
the algorithm does not change. The running time increases
slightly as the number of events increased due to the cloning.
Note however, that the length of the validity interval should
be shorter than half of the length of the context-state inter-
val, since we do not want to associate events with unrelated
contexts. Therefore each event is cloned at most once.

2.2 Fuzzy context modeling
The context modeling approach aims to overcome both

the rigidness and ordinality problems. In this model, the
intervals of the context states overlap and the events remain
instantaneous. With the overlapping intervals, there are no
strict boundaries between context-states, rather there are
zones in which multiple context-states are valid. The weight
of a context-state outside the overlapping zone is 1. The
weights of the two context-states in the overlapping zone
are governed by the weighting method (see figure 2). We
use two simple weighting schemes:

• Equal: The weight is 0.5 for both context-states in
the overlapping dimension.

• Linear: The weight of the previous context-state starts
from 1 and decreases linearly to 0, the weight of the
next context-state starts from 0 and linearly increases
to 1 throughout the overlapping zone. The sum of the
two weights at any given point is 1.

Context

value

Context-state

boundary

jth context-state (j+1)th context-state

Overlapping

zone

Weight

1

Figure 2: Example of overlapping context-states
with linear weighting.

This approach modifies the preference prediction model

by substituting M
(C)
c by α(t)M

(C)
c + (1− α(t))M

(C)
c+1 in the

model, where α(t) is the weight of the cth context-state at
the t value of continuous context dimension if t is in the in-
terval of the cth context-state. This means that in the over-
lapping zones preferences are estimated by using the linear
combination of the feature vectors of the two overlapping
context-states.

Incorporation of this technique into iTALS requires some
work. First, the model should be modified. Let’s use the
original dimensions U , I and C. (Note: here C is the orig-
inal discretized “rigid” context dimension.) Instead of a full
continuous approach, a finer discretization (compared to C)
of the context dimension is defined, denoted by X. An in-
terval in X must intersect with exactly one interval from C.
This step is needed, because the loss function of the iTALS
should sum over discrete entities of a dimension. The finer

the resolution is, the better is the approximation of the con-
tinuous case. The model in (1) is modified as follows:

r̂u,i,x = 1T
(
M (U)

u ◦
(
αxM

(C)
c + (1− αx)M

(C)
c+1

)
◦M (I)

i

)
(4)

Here x is the identifier of the interval in the X dimension
and αx = α(y), where y is the mean value of the xth interval
in X. The value of c is determined by x (the cth interval of
C contains the xth interval of X). Note that preference is
predicted with the resolution of X, thus allowing the usage
of the overlapping and non-overlapping zones and different
weight pairs for the context-state pairs of the overlapping
zones. This also suggests why it is enough to make X with a
relatively high resolution compared to C: the finer resolution
is needed to model the overlapping zones properly. Also note
that if C is a periodical context, such as seasonality, then
the (SC)th context-state overlaps with the 1st.

The loss function must be modified as well, to sum over
X instead of C. The loss of (2) is rewritten as follows:

L =

SU ,SI ,SX∑
u=1,i=1,x=1

wu,i,x (ru,i,x − r̂u,i,x)2 =

=

SU ,SI ,SC∑
u=1,i=1,c=1

∑
x∈c

wu,i,x (ru,i,x − r̂u,i,x)2,

(5)

where x ∈ c means that the cth interval of C contains the
xth interval of X.

The computation of user and item feature vectors is slightly
modified. The derivative of L by a user feature vector is:

∂L

∂M
(U)
u

=

=

(
SI ,SC∑
i=1,c=1

∑
x∈c

wu,i,x

(
M

(I)
i ◦Mc,x

)(
M

(I)
i ◦Mc,x

)T)
M (U)

u −

−
SI ,SC∑
i=1,c=1

∑
x∈c

wu,i,xru,i,xM
(I)
i ◦Mc,x,

(6)

where Mc,x = αxM
(C)
c + (1 − αx)M

(C)
c+1. ∂L

∂M
(U)
u

= 0 can

be solved efficiently for M
(U)
u using the steps of the original

algorithm [7]. The computation of an item feature vector
can be obtained analogously (by switching users and items).

However, the computation of the context-state feature
vectors is needed to be significantly modified. The derivative



of L by a context-state feature vector is:

∂L

∂M
(C)
c

=

SU ,SI∑
u=1,i=1,x∈c(0)

wu,i,xSu,iM (C)
c +

+

SU ,SI∑
u=1,i=1,x∈c(−1)

wu,i,xSu,i
(
αxM

(C)
c−1 + (1− αx)M (C)

c

)

+

SU ,SI∑
u=1,i=1,x∈c(+1)

wu,i,xSu,i
(
αxM

(C)
c + (1− αx)M

(C)
c+1

)

−
SU ,SI∑

u=1,i=1,x∈c(0)
wu,i,xru,i,xM

(U)
u ◦M (I)

i

−
SU ,SI∑

u=1,i=1,x∈c(−1)

(1− αx)wu,i,xru,i,xM
(U)
u ◦M (I)

i

−
SU ,SI∑

u=1,i=1,x∈c(+1)

αxwu,i,xru,i,xM
(U)
u ◦M (I)

i ,

(7)

where c(0) is the non-overlapping zone of the cth context-
state, c(−1) is the overlapping with the previous, c(+1) is the
overlapping with the next context-state and

Su,i =
(
M

(U)
i ◦M (I)

i

)(
M

(U)
u ◦M (I)

i

)T
.

Based on equation (7), ∂L

∂M
(C)
c

= 0 can be rewritten as

follows:

A(c)M
(C)
c−1 + B(c)M (C)

c + C(c)M (C)
c+1 = Y(c), (8)

where A(c), B(c), C(c) are K ×K matrices and Y(c) is a vec-
tor of K length. A(c), B(c), C(c) and Y(c) can be computed
efficiently, using similar steps to the original algorithm [7].
It is important to note that the context-state feature vectors
can not be computed independently, because the computa-
tion of the cth requires the (c − 1)th and (c + 1)th feature
vectors. The feature vectors must be computed at the same
time, resulting a system of linear equations of SCK × SCK
size. However ,the coefficient matrix has a special structure:
it is a tridiagonal block matrix for non-periodic context di-
mensions and cyclic tridiagonal block matrix for periodic
contexts (see 9). The blocks in the matrix are A(c), B(c),

C(c) K ×K sized matrices. Fortunately, these systems can
be solved in O(SCN

3) time. 3 We use seasonality, therefore
our system has a cyclic tridiagonal block coefficient matrix
and we use the method introduced in [2] to solve the system.

3A(c), B(c), C(c) are symmetric, positive definite matrices.
This property can be used as well to achieve some speeding-
up.


B(1) C(1) · · · A(1)

A(2) B(2) C(2) · · ·
. . .

. . .
. . .

· · · A(SC−1) B(SC−1) C(SC−1)

C(SC) · · · A(SC) B(SC)

 ·

·


M

(C)
1

M
(C)
2

...

M
(C)
SC−1

M
(C)
SC

 =


Y(1)

Y(2)

...

Y(SC−1)

Y(SC)



(9)

The computation of A(c), B(c), C(c) and Y(c) does not in-
crease the complexity, since they are computed with equal
cost to the computation of the covariance matrices in the
original algorithm. The computation of all context-state fea-
ture vectors takes O(SCN

3) time, therefore the complexity
of the original algorithm does not change. The memory re-
quirement of the algorithm increased, because the method
introduced in [2] requires the storage of B(c), C(c) matrices

and Y(c) vectors. This requires 2SCK
2 + SCK space. This

causes no problems in practice because K is a small number
(k < 500, usually k ∈ [20, 100]) and SC is usually also small,
compared to SU or SI .

2.3 Differences between the two approaches
Note that assigning validity intervals to events and al-

lowing context-states to overlap have apparently the same
effect. Event modeling was introduced using the former and
context modeling was presented using the latter, because
of which approach explains which modeling better. The
main difference is that by event modeling context-states re-
main mainly independent. Although through event duplica-
tion there is a loose connection between neighboring context
states, but their feature vectors are learnt independently.
This is in contrast with the context modeling, where the
events that fall in the overlapping zones tie the subsequent
context-states together. Therefore the feature vectors of the
context-states must be learnt simultaneously which allows
the approach to tackle the ordinality problem.

3. RESULTS
We compared the original and modified iTALS variants

using five implicit feedback datasets: three public (LastFM
1K, [4]; TV1, TV2, [6]) , and 2 proprietary (Grocery, VoD).
The properties of the data sets are summarized in Table 1.
The column “Multi” shows the average multiplicity of user–
item pairs in the training events.4 The train–test splits are
time-based: the first event in the test set is after the last
event of the training set. The length of the test period was
selected to be at least one day, and depends on the domain
and the frequency of events. We used the artists as items in
LastFM.

Our primary evaluation metric is recall@20, because it is
a good proxy for assessing the accuracy of live recommenda-
tions. Recall is defined as the ratio of relevant recommended
items and relevant items. An item is considered relevant for

4TV1 and TV2 data might have been filtered for duplicate
events.



Table 1: Main properties of the data sets

Dataset Domain
Training set Test set

#Users #Items #Events Multi #Events Length

Grocery E-grocery 24947 16883 6238269 3.0279 56449 1 month
TV1 IPTV 70771 773 544947 1.0000 12296 1 week
TV2 IPTV 449684 3398 2528215 1.0000 21866 1 day
VoD IPTV/VoD 480016 46745 22515406 1.2135 1084297 1 day
LastFM Music 992 174091 18908597 21.2715 17941 1 day

Table 2: Recall@20 values for algorithm variants and improvements over the original algorithm

Dataset iTALS Event modeling
Context modeling

(equal) (linear)

Grocery 0.1062 0.1107 (+4.25%) 0.1480 (+39.40%) 0.1456 (+37.11%)
TV1 0.1371 0.1414 (+3.14%) 0.2671 (+94.78%) 0.2788 (+103.32%)
TV2 0.1794 0.2242 (+24.96%) 0.2582 (+43.89%) 0.2009 (+11.98%)
VoD 0.0339 0.1027 (+203.12%) 0.2023 (+496.88%) 0.1298 (+282.89%)
LastFM 0.0994 0.1028 (+3.48%) 0.3178 (+219.80%) 0.3047 (+206.58%)

a user if there is an event in the test data with the given user
and item. Recall does not take into account the position of
an item on the recommendation list. We estimate that users
are exposed to 20 recommendations in average during a visit
(e.g. 4 pageviews, 5 items per recommendation), therefore
we choose cutoff at 20. In practice recommended items are
usually randomly selected from the first N elements of the
ranked item list. N is small but larger than the number of
recommendation boxes (e.g.: N = 20). We reward when the
user clicks one of the items, but it is irrelevant whether it was
the first or the N th item in our ranking. Therefore recall@N
suits the offline evaluation of recommender algorithms from
the practical viewpoint.

Seasonality was used as the continuous context dimension
in the experiments. The length of the season is one week
and one day for Grocery and other datasets respectively.
Time bands of equal length were used within the season.
The length of a time band was one day for Grocery and four
hours for the other datasets.

Hyperparameters, such as regularization coefficients, were
optimized using a part of the training data as validation set.
Then the methods were retrained on the whole training set
using the optimal hyperparameters. In addition to the hy-
perparameter of the original algorithm, the length of over-
lapping was optimized for fuzzy context modeling; for fuzzy
event modeling the length of the event validity, preference
and confidence computation (i.e. shape of the event validity
and weighting type) was optimized as well. We found that
for event modeling, usually confidences should be kept con-
stant for each intersected context-state, while preferences
should be weighted. This setting gave the best results in
three out of five cases. However, for some datasets other
setting might be more preferable. With context modeling,
we ran separate experiments with equal and linear weight-
ing.

Table 2 shows the results of the experiments. With event
modeling ∼ 3−4% improvement can be achieved in terms of
recall@20 three out of five cases. The improvements on TV2
and LastFM are, however, more remarkable. We reported
in earlier work [7] that the daily seasonality with 4 hours

long time bands does not suit the TV2 dataset as the result
of both iTALS and even the context-aware baseline is worse
than that of the standard matrix factorization. The reason
for this is partly the rigidness of the context-states, that
does not suit the data well. Once the rigidness of context-
states is waived, the usage of context no longer hinders the
learning, but in fact improved the performance, yielding ∼
25% improvement in the case of TV2 data set. The huge
improvement on LastFM is also due to the not well suited
context information. Time bands of four hours are too long
for that dataset (see [8]), because music tracks are shorter
than VODs, therefore the users’ behavior can change more
rapidly. Fuzzy modeling – even with long timebands – allows
to capture this behavior more accurately. The results for
context modeling are definitely better than that of the event
modeling. This difference can be attributed to the fact that
the effect of context-states on each other is much higher in
context modeling because of the joint computation of the
feature vectors. Equal weighting seems to be more efficient
than linear (4 out of 5).

It is interesting to note that the optimal value for over-
lapping/event validity was between 75–100% of length of the
time band. This means that the “ordinality” of the context
feature is important for achieving good results.

4. CONCLUSION
In this paper we proposed two approaches to model con-

tinuous context dimensions in factorization methods.
The fuzzy event modeling approach extends the validity

of the instantaneous events in the context dimension to a fi-
nite interval centered around the value of the event. Thus an
event may belong to multiple context-states as its validity in-
terval intersects with multiple context-state intervals. If this
occurs, the event is used for the training of all correspond-
ing context-states’ feature vector separately. The fuzzy con-
text modeling approach allows context-states of overlapping
intervals, thus some events are influenced by two context-
states. These events are used to train both context-states
simultaneously. The former method solves the rigidness of
context-states, while the latter also lessens the lack of ordi-



nality of the context-states.
The iTALS algorithm was modified to incorporate these

modeling concepts, without degrading its complexity. Using
seasonality as the continuous context dimension, we mea-
sured the effect of the proposed approaches on the accuracy
of recommendations using 5 implicit feedback databases.
Event modeling was found to be less effective in increasing
the accuracy, however it can be simply incorporated into any
factorization method and hardly increases the complexity of
the original algorithm. On the other hand, context model-
ing caused significant improvements in the accuracy, but its
incorporation into factorization methods requires more work
and the resulting algorithm becomes significantly more com-
plex.

Future research in this area includes (a) examination of
the modeling concepts in other learning strategies (e.g. BPR
[16]), as well as with additional factorization models (e.g.
the ones in [9]); (b) true continuous modeling of the context
dimension instead of approximate solutions.
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