Outline

• I. Background
 ▪ a. Implicit feedback
 ▪ b. Context
 ▪ c. Factorization

• II. Finished research
 ▪ a. Context-aware algorithms (iTALS, iTALSx)
 ▪ b. Speeding-up ALS
 ▪ c. General Factorization Framework

• III. Future research
 ▪ a. Automatic preference model learning
 ▪ b. Context-related research
Implicit feedback

- The practical scenario
- Collected by passive monitoring
- Available in large quantities
- Preferences are not explicit
- Noisy positive feedback
- No negative feedback
- Missing feedback needs to be handled
Context

- Context: Additional side information that can help refining the recommendations and tailoring them in order to fit the users' actual needs better.

- Context helps:
 - Dealing with context related effects during training
 - Adapting recommendation lists during recommendation time

- Types
 - User side information: user metadata, social networks, etc.
 - Item side information: item metadata, etc.
 - Context of transactions: time, location, device, etc.
Factorization

- Project entities into a low dimensional latent feature space
- The interaction between the representations estimate the preferences
Research
Context-aware algorithms [1,2]

- iTALS / iTALSx
 - Pointwise preference estimation
 - ALS learning
 - Scales linearly with the number of transactions
 - Different models

- Models for different problems
 - Low number of features, sparser data → iTALSx
 - Denser data, using higher number of features is possible → iTALS

N-way model (iTALS)

Pairwise interaction model (iTALSx)
Speeding up ALS [3]

• ALS scales cubically (quadratically in practice) with the number of features
 ▪ Bottleneck: solving a $K \times K$ system of linear equations
 ▪ Highly impractical to use high factor models

• Approximate solutions for speed-up
 ▪ ALS-CG: conjugate gradient based direct approximation of ALS
 o Efficiency depends on matrix-vector multiplication
 ▪ ALS-CD: optimize on a feature-by-feature basis (instead of computing whole feature vectors)
 o Implicit case: lots of negative examples \(\rightarrow\) compression
Speed-up results

• Accuracy similar to ALS
 • Significant speed-up
 ▪ Better trade-offs (accuracy vs. time)
 ▪ More efficient resource usage
 • Linear scaling with the number of features (in practice)
 ▪ High factor models are usable
• CG or CD?

<table>
<thead>
<tr>
<th>Method</th>
<th>Similar</th>
<th>Worse</th>
<th>Better</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS-CG</td>
<td>62 of 75 (82.67%)</td>
<td>10 of 75 (13.33%)</td>
<td>3 of 75 (4%)</td>
</tr>
<tr>
<td>ALS-CD</td>
<td>57 of 75 (76%)</td>
<td>16 of 75 (21.33%)</td>
<td>2 of 75 (2.67%)</td>
</tr>
</tbody>
</table>
GFF: General Factorization Framework [4]

• An algorithm that allows experimentation with novel models for the context-aware recommendation problem, that are not restricted to the two main model classes used by the state-of-the-art.

• Motivation
 - N_D dimensions \rightarrow lots of different possible preference models
 - Standard models not necessarily fit the problem (e.g. asymmetry)
 - Lack of tool that has this flexibility

• Features
 - No restriction on the context
 - Large preference model class
 - Data type independence
 - Flexibility
 - Scalability
Novel preference models with GFF (1)

- Interactions with context
 - User-item
 - User-context-item (reweighting)
 - User-context (bias)
 - Item-context (bias)
 - Context-context?
- A 4D problem
 - Users (U)
 - Items (I)
 - Seasonality (S)
 - Sequentiality (Q)

- Traditional models
 - N-way (USQI)
 - Pairwise (UI+US+IS+UQ+IQ+SQ)
- Novel models
 - Interaction (UI+USI+UQI)
 - Context-interaction (USI+UQI)
 - Reduced pairwise (UI+US+IS+UQ+IQ)
 - User bias (UI+US+UQ)
 - Item bias (UI+UQ+IQ)
 - (Other interesting ones: UI+USQI; UI+USI+UQI+USQI; USI+UQI+USQI)
Novel preference models with GFF (2)
Performance of novel models

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Best model</th>
<th>Improvement (over traditional)</th>
<th>Novel better than traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grocery</td>
<td>UI+USI+UQI</td>
<td>+20.14%</td>
<td>3 of 5</td>
</tr>
<tr>
<td>TV1</td>
<td>USI+UQI</td>
<td>+15.37%</td>
<td>2 of 5</td>
</tr>
<tr>
<td>TV2</td>
<td>UI+USI+UQI</td>
<td>+30.30%</td>
<td>4 of 5</td>
</tr>
<tr>
<td>LastFM</td>
<td>UI+USI+UQI</td>
<td>+12.40%</td>
<td>3 of 5</td>
</tr>
<tr>
<td>VoD</td>
<td>UI+USI+UQI</td>
<td>+19.02%</td>
<td>2 of 5</td>
</tr>
</tbody>
</table>
Future research
Automatic model learning for GFF

• Flexibility of GFF
 ▪ Useful for experimentation
 ▪ Finding the best (or fairly good) model requires lots of experiments for a new setup

• Automatize model selection
 ▪ Which contexts should be used?
 ▪ Which interactions should be used?
Model selection with LARS

- Model: UI+US+IS+USI+UQ+IQ+UQI+USQI+USQ+ISQ+SQ
- Each term contributes to the prediction of the preferences
- Terms are the features
- Inferred preferences (0/1) are the target
 - For every possible (u,i,s,q) combination
 - Weighting: multiply examples of positive feedback by the weight
Efficiency of the model selection

• Lot of examples \rightarrow efficiency?

• Efficient LARS implementations require only the
 - Covariance of features
 - Correlation of features with the target

• E.g.: $\sum_{u,i,s,q} w_{u,i,s,q} 1^T (U_u \odot S_s) 1^T (U_u \odot I_i \odot Q_q)$
 - Sum has many members
 - Can be computed efficiently
 $O\left(N^+K^2 + S_u K^2 + S_I K^2 + S_s K^2 + S_Q K^2\right)$
 - Precomputed covariance matrices and sums of vectors required
Interaction of dimensions

• When to use the model selection?
• Dimension interact
 ▪ One ALS epoch modifies a certain feature to be optimal with the current model
 ▪ Different terms optimize for different aspects (e.g. USI and IS)
 ▪ Shared features will be suboptimal to either but may lean to one side
 ○ Problems with unbiased selection
• Handle terms or groups of terms separately
 ▪ Hard to integrate into solution
 ▪ Requires multiple instances of feature matrices
 ▪ Increases model complexity
Selection strategies

- Joint pretraining (few epochs), model selection, training selected model
- Multiple iterations of pretraining and selecting
- Joint training of a few terms, extend to full model using the trained features, (additional training), selection, train
- Separate training, model selection, (merge separate feature matrices for the same dimension), (training)
- Separate training, model selection, train non selected members on the residual
Context-related research

• Non-conventional context
 - Standard context: entity based
 - Other types
 - Hierarchical
 - Composite
 - Ordered
 - Continuous

• Context quality
 - General quality
 - Suitability for a model or interaction type
 - Improving quality by splitting/combining context-states
Thank you!

References (papers can be downloaded from http://hidasi.eu)