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Chapter 1

Preliminaries

1.1 Recommender systems

With the exponential growth of e-commerce, online services and content, users often find
themselves overwhelmed by information. The size of the product catalog of e-commerce
sites or the content catalog of a video or a news site is too large to be reviewed by
humans. On larger sites, the speed of the growth of the content catalog is so high that
it is impossible for a normal user to keep up with it. Even if content/products are
filtered to a specific topic/category and search options are available, the time required
for reviewing them is still considerable. This phenomenon is called information overload.

Recommender systems are information filtering tools that help users in information
overload to find interesting items (products, content, etc). Users get personalized rec-
ommendations that contain typically a few items deemed to be of user’s interest. The
relevance of an item with respect to a user is predicted by recommender algorithms;
items with the highest prediction scores are displayed to the user.

In the last few years more and more services started using recommender systems and
it is becoming a standard feature in online services. These systems benefit the service
provider, because users are more likely to find interesting content/product on the site.
Therefore they are more likely to remain on the site longer, purchase more products
from the service, spend more and/or return more frequently due to being satisfied with
the service. Recommender systems are used on e-commerce, news, classified ad and
dating sites, in IPTV platforms and in other services.

1.1.1 Recommender algorithm

The core of the recommender system is the recommender algorithm that ranks the items
for the users based on their relevance. Recommender algorithms are usually sorted into
five main approaches [58] and hybrid algorithms that are the combination of the pure
aproaches:

1. Content based filtering (CBF): CBF algorithms use item metadata (e.g. au-
thor, genre, etc.). First, the metadata of the items is analyzed using text mining
and methods from information retrieval [5]. User profiles are built from the meta-
data of items the user liked/disliked using machine learning. Preferences are pre-
dicted by matching the user profile with item metadata [42]. This usually results

9



10 CHAPTER 1. PRELIMINARIES

in recommendations (very) similar to the items, the user liked before. The main
advantages of the CBF methods that it can handle new items and CBF based
recommendations are easy to understand for the end user. Its disadvantages are
that it recommends very similar items (low serendipity, unable to surprise) and it
is less accurate than collaborative filtering [49].

2. Collaborative filtering (CF): CF algorithms use only the user–item interactions
(also called events or transactions). The assumption of CF is that two users are
similar if they consumed similar items; and two items are similar if they have been
consumed by similar users [61]. The advantages of CF methods are that they are
traditionally accurate and easy to use because they rely on a single information
source (events). However CF algorithms only work well with users and and items
who have at least a few events, thus they can not recommend to new users and
can not recommend new items. This phenomenon is called the cold-start problem
[62].

3. Demographic: Recommendations are provided based on the demographic pro-
file of the user [43]. Users are segmented into various groups based on socio-
demographic information and recommendations to each group are usually manu-
ally selected by marketing experts. The demographic approach is rarely used in
modern recommenders in its pure form.

4. Knowledge-based: Recommenders of this sort are specific to certain domains
or even to certain services. Detailed information about features of the items—
such as their usefulness for different user needs and their relation—are collected
into a knowledge base. Later this information is used to match items to the
needs of the users [9, 57]. Knowledge-based approaches provide higher accuracy
compared to other methods at the start of their deployment due to using the
domain specific knowledge, however later they fall behind methods equipped with
learning capabilities. It is also important to point out that the construction of the
domain specific knowledge base is very time consuming and generally can be used
for a single recommendation problem (can not be transferred to other domains).

5. Community based: Also known as social recommender systems [18]. This ap-
proach assumes that users have similar tastes/interests to their friends. With the
rapid growth of open online social networks, lots of information is available on
social relations between users and their individual interests (e.g. likes). Recom-
menders of this type propagate information on the social network and recommend
items that had been liked by certain subsets of the user’s connections. The results
of these approach are mixed [20, 44] and their careless usage may result in the
users disliking the recommender feature of the service.

6. Hybrid recommenders: The combination of two or more from the aforemen-
tioned approaches. Hybrid approaches aim using the strengths while overcoming
the weaknesses of the combined approaches [10].

CF algorithms are the most accurate amongst the pure approaches in a generic
situation, e.g. they are more accurate than CBF methods if sufficient preference data
is available [49]. CF algorithms can be classified into memory-based and model-based
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ones. The former are neighbor methods that make use of item or user rating vectors to
define similarity, and they calculate recommendations as a weighted average of similar
item or user rating vectors (e.g. [15, 37, 56]). In the last decade, model-based methods
gained enhanced popularity, because they were found to be much more accurate in the
Netflix Prize [8], a community contest launched in late 2006 that provided the largest
explicit benchmark data set (100M ratings) for a long time. Model-based methods
build generalized models that intend to capture user preference. The most successful
approaches are the latent factor algorithms. These represent each user and item as a
feature vector in a K dimensional latent feature space.

Matrix Factorization

The most well-known latent feature based algorithms are matrix factorization (MF)
methods (e.g. [7, 34, 50, 60, 66, 67]). Matrix factorization methods organize ratings or
preferences into a matrix (R), whose dimensions are the users and the items. If user u
rates item i with a rating r then Ru,i = r. R is a large matrix, but very sparse. A user
has interactions with only a small fraction of items, thus the majority of rating data is
missing. The missing ratings are either considered to be missing or substituted with a
constant value (e.g. zeros or the mean of the ratings).

Item feature 

matrix
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 f
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a

tu
re

 

m
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ix

≈

Items
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Preference 

matrix
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Figure 1.1: Concept of matrix factorization.

The concept behind matrix factorization is to approximate R as the product of two
low rank matrices (R̂ = (M (I))TM (U)), referred to as feature matrices (see Figure 1.1).
One of the feature matrices belongs to the users (M (U)) and the other to the items
(M (I)). The size of the user feature matrix is SU×K, i.e. it has a row ofK length for each
user. K is an important hyperparameter of these kinds of algorithms. The uth row of the
user feature matrix is the latent feature vector for user u. Latent feature vectors are also
assigned to items in a similar fashion. The predicted rating/preference of user u on item

i is the dot product of their feature vectors, i.e. R̂u,i = (M
(I)
i )TM

(U)
u =

∑K
k=1M

(U)
u,k M

(I)
i,k .

The interpretation of matrix factorization is that users and items are projected into a
K dimensional space of latent features. Their interaction in this space is used to predict
the ratings/preferences. The values in the feature matrices are learned using various
optimization procedures that optimize for minimizing the difference between the real
and the predicted values of the known coordinates of R w.r.t. a loss function (e.g. root
mean squared error (RMSE)).

Some methods (e.g.[53, 64, 65]) do not optimize for the reconstruction of the R
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matrix, but rather define other loss functions (e.g. ranking between items) and optimizes
the latent features so that they minimize the loss. These methods are latent model
based approaches but not matrix factorization methods in the traditional sense. Yet,
MF methods and other latent feature based collaborative methods are closely related.

1.1.2 Feedback types

Depending on the nature of the user–item interactions, recommendation problems can
be classified into explicit and implicit feedback based problems.

Explicit feedback is provided by the users, usually in the form of ratings, and it
explicitly encodes their preferences on the items. In most scenarios, explicit feedback
contains both positive and negative feedback. In some special cases either positive or
negative feedback is missing [46]. This special case is technically more closely related to
the classic implicit feedback problem. As the users interact only with a small fraction of
items, the rating data is extremely sparse, in a sense that most of the ratings are missing.
The classic explicit feedback based task is rating prediction, where the goal of the
algorithm is to accurately estimate missing ratings of the users on items. The accuracy
can be measured by classic accuracy metrics such as Root Mean Squared Error (RMSE)
or Mean Absolute Error (MAE). This task was set in the focus mostly thanks to the
Netflix Prize [8]. The goal of a recommender system however is to present a small number
of items to the users that are interesting/useful to them. For this the recommender has
to rank the items first (based on their relevance to the given user) and return the first
few items on this ranked list. This task is called the topN recommendation. The result
of rating prediction can be transformed to topN recommendations by recommending
items with the highest predicted ratings for a given user. Good rating prediction not
necessarily translates to good topN recommendation.

Implicit feedback is collected via monitoring the behaviour of users while they use a
service (e.g. a web shop). User interaction is not required in order to get the feedback,
therefore it is available in large quantity. This is of key importance in practical scenarios.
Explicit feedback is usually either not available or its amount is negligible compared to
implicit feedback. The primary challenge of implicit feedback is that it does not explicitly
encode user preferences. These preferences must be inferred from the interactions. The
presence of a user action on an item is considered to be a noisy sign of positive preference.
For instance, a recommender system may consider the navigation to a particular item
page as an implicit sign of preference for the item [46]. The strength of the events’
indication of preferences varies on a type by type basis. E.g. purchasing an item is
a stronger indicator than looking at a product page (browsing). The assumption of
positive preference is not always correct, hence the noise. For instance, a purchased
item could be disappointing for the user, so it might not mean a positive feedback.

It is even harder to infer negative feedback as the absence of an event can be traced
back to multiple causes, the most common being that the user does not know about
the item. Although there are some ways to infer negative feedback in special cases, it is
generally assumed to be missing and the absence of positive feedback is considered as
a very weak sign of negative preference. Algorithms working with the implicit problem
should consider the “missing” feedback in some way.

Although there has been a shift in algorithm research towards the more practical
setting of topN recommendations based on implicit feedback in the last few years [30,
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64, 65], the majority of research still focuses on ratings and rating prediction.

1.2 Context-awareness in recommenders

Context-aware recommender systems (CARS)[2] consider additional information (termed
contextual information or briefly context) besides user–item interactions. Any informa-
tion can be considered as context, however here I distinguish event context from other
types of data, such as item metadata, socio-demographic information or social network
of the user. The common property of latter categories that they are bound either to
the item or to the user. Also, they are thoroughly examined in specific research topics,
such as content based or hybrid recommenders. On the other hand, event context is
associated with the interaction of the users and items and can not be bounded to either
one. Typical examples are the time or the location of the event. The hypothesis of
context-aware recommendations is that they can significantly improve recommendation
accuracy, because: (1) Context related effects can be handled during training. For ex-
ample, certain shifts in the behaviour, like seasonal changes, are only understandable
with the proper context provided. For algorithms that do not consider context, these
variations seem to be semi-random and can not be handled properly, thus the result will
be similar to learning on noisy data. (2) Recommendation lists can be tailored according
to the actual value of the context, which may influence the users’ needs. For example,
a movie that is all about the spectacle will be recommended when the user uses his TV
and not when he watches the small screen of his mobile device.

Context can be either explicit, implicit or inferred. Explicit context is provided by
the user (e.g. mood). It is very rare that a service provides an option to provide explicit
context and even if it is the case, the context data is very scarce. Implicit context
is collected by the system and does not require the contribution of users. Typical
implicit contexts are the time of the transaction, the location of the transaction and
parameters about the device/program through which the user initiated the transaction.
Although the general availability of a certain context in a service is high, it is possible
that the values are missing for some events. Inferred context is an intermediate category
between explicit and implicit context. Explicit context like information is inferred from
the behaviour of the user. For example, if the user watches sad movies he must be sad.
Due to the elicitation process this type of context is usually unreliable.

Context data can be of various type. It is often assumed that context values are
nominal and atomic (e.g. device, mood). Other kind of contexts, such as hierarchical,
composite, orderal and continuous contexts also exist. However it is common practice
to transform non-nominal context to nominal.

Context-aware recommendation algorithms can be divided into three groups [2]:
(1) pre-filtering approaches partition the training data according to the value of the
context(s) and train traditional (non context-aware) algorithms on said partitions; (2)
post-filtering approaches disregard the context during training, but modify the list of
recommendations according to the actual context-state; (3) contextual modeling ap-
proaches consider the context dimension(s) during the learning process.
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1.2.1 Data model for context enriched data

In this section I briefly review data models for the representation of context-aware
data. The focus is on the representation of the input, that is users, items, context;
the target attribute (e.g. rating, preference) can be added in a straightforward way.
One of the most extensive data models for this task is the Multidimensional Dataspace
Model (MDM, [3]). In MDM the dataspace is the Cartesian product of ND dimensions:
DS = D1 ×D2 × · · · ×DND

. Each dimension is the Cartesian product of one or more
attributes: Di = Ai,1 × Ai,2 × · · · × Ai,Ni . The data model is very similar to that of
relational databases. It is usually also required that the values of an attribute come
from a set of atomic and nominal attributes. Therefore continuous variables should be
discretized and the order between attribute values is disregarded. The data – usually in
the form of transactions – is the subset of every possible combination of the attribute
values of all attributes of all dimensions.

An example for representing data in MDM is given as follows. Let D1 = U be the
dimension for users, D2 = I the dimension for items, and D3 = L the dimension for
locations, thus the dataspace is every possible combination of users, items and locations,
i.e. DS = U×I×L. Let us describe the users by their ID, gender and age; the items by
their ID and genres; and the location by the city. Note the following: (1) The data model
does not require using the IDs for users/items. However in the classical recommendation
scenario the system recommends individual items to individual users. Therefore IDs
should be present to distinguish them. If the subject of the recommendation is not an
item but one item property, the ID can be omitted. (2) If an item can belong to only
one genre, then the item dimension has one attribute that contains this information.
If an item has multiple genres then either the combination of genres are the attribute
values for a single genre attribute or a binary attribute is required for each genre that
contains one if the item belongs to that genre (e.g. IsAction, IsComedy, etc.).

Almost all practically used context-enhanced data can be expressed in a more simple
dataspace model, where each dimension consist of exactly one attribute. I refer to this
dataspace model as single attribute MDM or SA-MDM. Note that if data is representable
in SA-MDM it is also representable in a tensor. The SA-MDM representation is powerful
enough for commonly used context dimensions, such as time or location. Even context
dimensions that contain more than one attributes can be represented in SA-MDM,
but less effectively by just ignoring the grouping of attributes by the dimensions. The
main conceptual difference is that interactions between attributes of the same dimension
(e.g. item IDs and item genres) cannot be captured. By “converting” all attributes to
dimensions we lose the information of this grouping and thus assume extra interactions.
This may result in much more interactions (and therefore complexity), especially if
multi-valued attributes, like genre or category, is decomposed to many binary attributes.
Factorization methods (e.g. [23, 24, 51, 63] usually use SA-MDM.

Another way to simplify MDM is by setting a limit on the number of dimensions as
well. Matrix factorization (e.g. [30, 53, 66]) limits the number of dimensions to two (one
for users, one for items) and several tensor factorization methods work on only three
dimensional data (e.g. [52, 63]).

Another interesting variant of MDM is when the number of dimensions is fixed, but
the number of attributes in a dimension is not. Prominent examples using such data
model are SVDFeature [13], SVD++ [34] and NSVD1 [47]. They use two fixed dimen-
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sions: users and items. SVDFeature sets no restrictions on the number and meaning of
attributes for neither the users nor the items. SVD++ requires one of the dimensions
to contain a single ID attribute only while the other dimension consists of an ID and
several other attributes. Usually the user dimension is restricted to the ID and the ad-
ditional attributes in this case are binary attributes for all item IDs that are set to one
if the user intereacted with the given item. NSVD1 also restricts one of the dimensions
to an ID attribute, while the other consists of binary entities of descriptor entities. The
descriptor entities are either metadata tokens or users that rated the given item.

1.3 Problem definition

This work focuses on solving the context-aware implicit feedback based recommendation
task with factorization and is heavily influenced by the practical considerations. The
aim of the research is to integrate context and eventually other types of information (e.g.
metadata) into factorization algorithms in order to increase recommendation accuracy
for implicit feedback based topN recommendations. Context is defined as event context
(associated with the transactions, not with the entities of the transaction). The main
metric for recommendation accuracy is recall@20 (see Section 1.4).

1.3.1 Notation

The following notation is used:

A ◦B The Hadamard (elementwise) product of A and B. The
operands are of equal size. The result at index (i, j, . . .) is
the product of the elements of A and B at index (i, j, . . .).

Ai The ith column of matrix A.
Ai1,i2,... The (i1, i2, . . .) element of tensor/matrix A.
K The number of features, parameter of the factorization.
ND The number of dimensions of the tensor.
R A ND dimensional tensor that contains only zeroes and ones

(preference tensor).
ri1,...,iND

An element of R at the (i1, . . . , iND
) index.

W(i1, . . . , iND
) A weight function that assigns a real value to every cell of

R.
Si The size of T in the ith dimension (i = 1, . . . , D).
N+ The number of ratings (explicit case); non-zero elements in

tensor T (implicit case).

M (i) A K × Si sized feature matrix. Its columns are the feature
vectors for the entities in the ith dimension.

Aj1,...,ji−1,j,ji+1,...,jD denotes an element of tensor A where the index in the ith

dimension is fixed to j, and other indices are arbitrary.
NI Number of inner iterations.
U , I, S, Q, C Reserved for users, items, seasonality, sequentiality and con-

text respectively. Sometimes used instead of indices when
distinguishing objects assigned to dimensions (e.g. SI : num-
ber of items, M (U): user feature matrix).
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1.4 Experimental setup

This section gives an overview on the experimental setup I used to evaluate my algo-
rithms.

1.4.1 Datasets

I generally use five genuine implicit feedback data sets to evaluate our algorithm. Three
of them are public (LastFM 1K, [11]; TV1, TV2, [14]), the other two are proprietary
(Grocery, VoD). The properties of the data sets are summarized in Table 1.1. The
column “Multi” shows the average multiplicity of user–item pairs in the training events.1

The train–test splits are time-based: the first event in the test set is after the last event
of the training set. The length of the test period was selected to be at least one day,
and depends on the domain and the frequency of events. I used the artists as items in
LastFM.

Table 1.1: Main properties of the data sets

Dataset Domain
Training set Test set

#Users #Items #Events Multi #Events Length

Grocery E-grocery 24947 16883 6238269 3.0279 56449 1 month
TV1 IPTV 70771 773 544947 1.0000 12296 1 week
TV2 IPTV 449684 3398 2528215 1.0000 21866 1 day
LastFM Music 992 174091 18908597 21.2715 17941 1 day
VoD IPTV/VoD 480016 46745 22515406 1.2135 1084297 1 day

1.4.2 Context dimensions

The area of context-aware problems is wide, as any additional information to the user–
item interaction can be considered as context. Context dimensions assumed to be event
contexts, meaning that their value is not determined solely by the user or the item; rather
it is bound to the transaction. E.g. the time of the transaction is an event context, while
the genres of the item is not.

Throughout this dissertation I use a general CA setup and use the time and the
order of the transactions to derive context variables that are relevant and thus help
improving recommendation accuracy. Implicit feedback data does not typically contain
many other event context variables: some contexts, like mood, require to be explicitly
stated, while others, like location, device, are specific to domains. Thus, seasonality and
sequentiality are applied as contexts of the transaction. Both contexts can be derived
for any dataset that has timestamp associated with its events. Additionally, the two
contexts are rather different and capture different aspects of the data. Their applicability
to most datasets makes them ideal subject for the experiments. I use either or both
of them for evaluating context-aware algorithms, thus a transaction is a 3- or 4-tuple
that contains (1) the user, (2) the item, (3) the time band (based on the timestamp) (4)
and/or the previously consumed item by the same user.

1This value is 1.0 at TV1 and TV2. This is possibly due to preprocessing by the original authors
that removed duplicate events.
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Seasonality

Many application areas of recommender systems exhibit the seasonality effect, because
periodicity can be observed in many human activities. Therefore seasonal data is an
obvious choice for context [39]. First we have to define the length of the season. Within
a season we do not expect repetitions in the aggregated behavior of users, but we expect
that at the same time offset in different seasons, the aggregated behavior of the users
will be similar. The length of the season depends on the data. Once we have this, within
seasons we need to create time bands (bins) that are the possible context-states. Time
bands specify the time resolution of a season, which is also data dependent. We can
create time bands with equal or different length. In the final step, events are assigned
to time bands according to their time stamp.

For Grocery a week was defined as the season and the days of the week as the time
bands. The argument here is that people usually do shopping on weekly or biweekly
basis and that shopping habits differ on weekends and weekdays. One day was used as
season for the other four data sets with 4 hour intervals. Note that one can optimize
the lengths and distribution of time bands but this is beyond the scope.

Sequentiality

In some domains, like movies or music, users consume similar items. In other domains,
like electronic gadgets or e-commerce in general, they avoid items similar to what they
already consumed and look for complementary products. Sequential patterns can be
observed on both domain types. Sequentiality as a context dimension was introduced
by me in [24] and uses the previously consumed item by the user as a context for the
actual item. This information helps in the characterizations of repetitiveness related
usage patterns and sequential consumption behavior.

During evaluation sequential context is fixed to the item that was targeted by the
last transaction of the user in the training set. Thus no information from the test
data is used during the evaluation. The other way (i.e. constantly update the context
value based on test events) would be valid as well and would result in better results.
Because the test data spans over a short period of time that generally contains a few
purchasing sessions for the users, preferences thus can be accurately predicted also from
this information.

1.4.3 Metrics of recommendation accuracy

I focus on topN recommendations. For a given user–context configuration setting all
items are ranked by their predicted preference (r̂). Evaluation metrics are calculated
on a test set that does not take part in the training in any form. The relevant items
for a user–context configuration (i.e. query) are defined as the items on which the user
has events under the given context in the test set. Recommended items are the first
N items taken from the ranked list of items generated for the query. Generally, I use
N = 20; results with N = 10 and N = 5 usually correlate. It is important to note that I
rank all items during evaluation. Although there are other evaluation methodologies in
which relevant items are ranked against a small random selection of non-relevant items
[34] to reduce the time of evaluation; ranking all items gives more accurate results and
it tells more about the actual performance of the recommender.
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The most commonly used metrics for evaluating topN recommendations are (with
all metrics, at most the first N items of the recommendation lists are considered):

1. Recall: The ratio of recommended and relevant items to the relevant items. In
other words, it is the proportion of test events that were ranked above in the
first N places of their corresponding recommendation list. Recall is useful if the
number of recommendations received by a query is expected to be fix and if there
is no distinction between the N recommended items. Higher recall is better.

2. Precision: The ratio of recommended and relevant items to the recommended
items. In other words, it is the fraction of the recommended items that were
relevant. Precision is useful if recommendations have some kind of cost associated
with them and if there is no distinction between the N recommended items. Note
that if the number of recommendations is the same for each query, precision can
be computed from recall (and vice versa) by a constant multiplication. Higher
precision is better.

3. F1 score: The harmonic mean of precision and recall. Higher F1 score is better.

4. Precision-recall curve: Values of precision and recall from 1 to N . As the
number of recommended items increase, recall increases and precision decreases.
The curve is useful for finding a good number of items to recommend and a trade-
off between recall and precision if the number of recommended items is not fixed.

5. AUC (Area Under Curve): The area under the precision-recall curve from
recommending 1 item to recommending N . Higher AUC is better. This metric is
also referred to as AUPR (Area Under the Precision-Recall curve) in other fields
of machine learning.

6. MAP (Mean Average Precision): The mean of average precision of the rec-
ommendation lists over queries. The average precision of a list generated for a
query (i.e. user–context configuration) is the sum of precisions cut-off at each
relevant item in the recommendation list divided by the number of relevant items.
Average precision is a sort of weighted recall where lower weights are assigned to
relevant and recommended items that are further down the list. MAP is useful
if there is some kind of distinction between items of different positions on the
recommendation list. Higher MAP is better.

7. NDCG (Normalized Discounted Cumulative Gain): The ratio of the dis-
counted cumulative gain and the maximum (ideal) DCG value; averaged over
queries. The DCG of a recommendation list is the sum of relevances of relevant
and recommended items discounted by a function of their position in the list. For
example, DCGq =

∑N
i=1

(
2reli − 1

)
/log2(i + 1), where reli = 1 if the ith item in the

recommendation list is relevant. The ideal DCG is calculated on a ideal recom-
mendation list where items are ordered according to their actual relevance. NDCG
is useful if there is some kind of distinction between items of different positions on
the recommendation list. Higher NDCG is better.

8. MRR (Mean Reciprocal Rank): The average of the reciprocal rank of the
relevant items in their corresponding recommendation lists. An alternative defi-
nition averages over queries (instead of events) and assigns the reciprocal rank of



1.4. EXPERIMENTAL SETUP 19

the first relevant item in the recommendation list to the query. MRR is useful
if there is some kind of distinction between items of different positions on the
recommendation list. Higher MRR is better.

9. Hitrate: The ratio of queries for which at least one relevant item was recom-
mended to the number of queries. Hitrate is useful if the number of successful
recommendations per user does not matter if there is at least one. Higher hitrate
is better.

Accuracy metrics of top-N recommendations usually well correlate. The selection of
evaluation metric depends on the recommendation interface as well as the domain. The
selection of N depends on the estimation of how many recommendations an average
user is exposed to during a session.

My primary evaluation metric is recall@20, defined as the ratio of relevant recom-
mended items and relevant items. The reason for using recall@N is threefold: (1) I found
that in live recommender systems recall usually correlates well with click-through rate
(CTR), that is, an important online metric for recommendation success. (2) Recall@20
is a good proxy of estimating recommendation accuracy offline for real-world applica-
tions (similar finding is available in [40]). (3) Recall is event based. The inclusion of
context changes the query set of the test data, therefore the comparison by query based
metrics is unfair.

If we have no highlighted items in the recommendations (i.e. all recommended
items are equal), then it makes sense to disregard the order of the recommended items.
Whether this is true is determined by both the interface and the recommendation logic.
For example, if we want to show more items or more diverse itemset to a user during
a session while still giving relevant recommendations, we can randomize the top N
recommendation and recommend the first K of this random order. This way we can
overcome showing users the same K items multiple times and have a higher chance for
clicking. The goal of the system is to recommend items that the user likes. The @20
comes from a very average setting of recommending 5 items (from a randomized pool
of top 20 items) per page and the user having 4–6 page views in a session. Of course
these numbers are highly varied in different applications, but we still think that this is
a realistic proxy for a real recommender as it can get.

1.4.4 Optimization of hyperparameters

The hyperparameters of the algorithms, such as regularization coefficients, are optimized
on a part of the training data (validation set). Then the algorithms are trained on the
whole training data (including the validation set) and recall was measured on the test
set. The number of epochs is usually set to 10, because (1) I found that factorization
methods converge fairly well in at most 10 epochs; (2) the time of the training should
be also considered and 10 epochs is usually a good trade-off between time and accuracy
in practical settings. The number of features varies, but is usually set between 20− 80,
which is a good trade-off between accuracy and training time in practice.
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Chapter 2

Literature survey

In this chapter I briefly review the literature on implicit feedback based factorization
algorithms and factorization used for context-aware recommendations.

2.1 Factorization on implicit data

The research community of recommender systems traditionally focuses on rating predic-
tion on explicit data. This can be attributed to several influencing factors. (a) Rating
prediction is a very well defined problem with a simple objective when compared to top-
N recommendations. (b) Recommender system research gained lot of attention due to
the Netflix prize, which was a rating prediction task. (c) Most of the publicly available
datasets are rating based.

When it comes to the industrial application of recommender systems, rating pre-
diction is a suboptimal solution. First, the generation of recommendation lists require
top-N recommendation. Although items can be rated by their predicted ratings, error
based metrics (e.g. RMSE) and list based measurements (e.g. recall, MAP) usually do
not agree on the ordering of algorithms (e.g. the best rating predictor might be the worst
when it comes to ranking). Secondly, explicit feedback is usually not available in large
quantities in most practical settings and even if it is available, the quantity of implicit
information is usually few magnitudes larger (e.g. even if 80% of the users rate actively,
there is no explicit data on 20% of them).

There has been some research on implicit data, but it gained more attention since
2012, when several new methods were introduced. However to this day, most of the
research uses explicit data, but usually report ranking results besides the error of the
rating prediction.

Explicit feedback based algorithms usually can not be applied directly to implicit
feedback. When it comes to factorization it usually requires a loss function that is
tailored towards the implicit problem and a well scaling learning procedure. The two
main approaches for ranking in the implicit task w.r.t. loss functions are pointwise
and pairwise ranking. However, the naive minimization of the objective function in the
implicit case is typically expensive, as it scales with the size of the user–item matrix.
There are two dominant approaches to overcome this difficulty: (1) the trade-off solution
that sacrifices the accuracy to some extent for computational efficiency by sampling the
data (usually the missing ”negative“ feedback is sampled); (2) the direct minimization of
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the objective function without sampling by decomposing the calculation to independent
parts.

2.1.1 Implicit matrix factorization algorithms

iALS/iMF: The seminal work for implicit data based matrix factorization was proposed
by [30]. The method is usually referred to as iALS or iMF. Implicit feedback is modeled
by pointwise preferences. If a user has an event on an item, positive preference is assumed
and a preference value of 1 is assigned. Otherwise negative preference is assumed with
a preference score of zero. However the information in the missing negative feedback is
less reliable, therefore weights are assigned to every possible transaction. The weight
of missing transactions is constant and significantly lower than that of the positive
feedback. The method applies direct optimization, alternating least squares learning
and decomposes the derivatives of the objective function to user-dependent and item-
independent parts, hence the complexity of a training iteration is reduced to scale linearly
with the number of events.

BPR: Bayesian Personalized Ranking [53] is a pairwise ranking approach. It is a
Bayesian approach that samples negative feedback for every positive feedback, i.e. for
every event of the user it samples an item that has no transactions with that user. It
is assumed that the user prefers the item on which he has an event over the other one.
The model parameters with the highest probability in the aposteriori distribution of
the model parameters (given the data) are selected. The optimization is done through
stochastic gradient descent. The likelihood is the product of the probabilities of the
users preferring the item in their events over an other item. It is assumed that these
probabilities are independent. The probability of the user preferring the item of the
transaction over the other (given the model parameters) is the function of the difference
of the prediction scores of the two items. Since preference can be directly derived from
the prediction scores (item with the higher score is preferred), the Heaviside step function
would be appropriate here. However its non-continuity would make optimization difficult
thus sigmoid is used.

RankSGD: This method was proposed by [31] and it optimizes for error-rate. Error-
rate is ER =

∑SU ,SI
u=1,i=1 ((ru,i − ru,j)− (r̂u,i − r̂u,j))2. ru,i is the preference of user u

on item i and it is 1 if the user has any events on the item and 0 otherwise; r̂u,i is
the preference, predicted by the algorithm. Low error-rate means that the difference
between the predicted preferences of an item pair is small if the actual preferences are
close and large otherwise. The optimization is done via stochastic gradient descent
(SGD) by sampling negative feedback for each positive one.

RankALS: This is another method [65] that optimizes for error-rate. But instead
of sampling it separates the computations to make the learning efficient w.r.t. training
times. It achieves similar results to RankSGD.

CLiMF: Collaborative Less is More Filtering optimizes for a smoothed approxima-
tion of the mean reciprocal rank (MRR). Optimization is done via SGD.

2.2 Context-aware factorization

Context-aware recommender systems [3] have emerged as an important research area in
the last five years and entire workshops are devoted to this topic on major conferences:
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CARS series started in 2009, [1]; CAMRA in 2010, [59]. The application fields of context-
aware recommenders include among others: point-of-interest [4], video [68], music [16]
and news recommendation [41].

The generalization of matrix factorization for more than two dimensions is tensor
factorization (TF). Here context dimension(s) are considered along with the user and
item dimensions and the ratings/events are organized into a tensor. For example let us
have a set of items, users and ratings (or events) and assume that additional context
of the ratings is available (e.g. time of the rating). Having C different contexts, the
rating data can be cast into a ND = C + 2 dimensional tensor, T . The first dimension
corresponds to users, the second to items and the subsequent C dimensions [3, . . . , ND]
are devoted to contexts. Note that the tensor is very sparse: either most of the ratings
are missing (with explicit feedback) or most of the entity combinations (events) are
not present in the training data (implicit case). Then a low dimensional representation
is created for this tensor. Using more than two dimensions however enables creating
several different representations.

2.2.1 Explicit algorithms

The majority of context-aware factorization methods operate on ratings. Some of the
most notable algorithms are highlighted here.

Multiverse TF: This method [33] is an efficient sparse HOSVD [36] decomposition
of the rating tensor. It decomposes a D dimensional sparse tensor into D (low rank)
matrices and a D dimensional (low rank) tensor. If the size of the original tensor is
S1 × S2 × · · · × SD and the number of features is K then the size of the matrices are
S1 ×K, S2 ×K, . . . , SD ×K and the size of the tensor is K × · · · ×K. The authors
use gradient descent to learn the model. The complexity of one training iteration scales
linearly with the number of ratings (N+) and cubically with the number of features (K),
which is a large improvement compared to the dense HOSVD’s O(K · (S1 + · · ·+SD)D).

PITF: Pairwise Interaction Tensor Factorization [17, 52] decomposes a three dimen-
sional rating tensor into three feature matrices. A cell of the tensor is approximated
as the sum of the pairwise dot products of the three corresponding feature vectors (one
from each feature matrix). In other words the rating of user u on item i under context
c is approximated as the sum of the dot product between the user’s and the item’s, the
user’s and the context’s and the item’s and the context’s feature vector. SGD is used
to learn the feature matrices and it scales linearly with the number of ratings.

Factorization Machines: FM [51, 54, 55] is the generalization of PITF. It ap-
proaches the problem from a slightly different angle, but the resulting algorithm can
still be considered a tensor factorization method. The authors here do not arrange
the data into a tensor, they rather create description matrix for the events, in which
a sparse description vector is assigned to each event. The authors refer to this matrix
and vectors as feature matrix and vector, but since this term is generally used for the
matrix/vector of the latent features, I will refer to them as description matrix and vector
to avoid confusion. The rows of the description matrix are the ratings and the columns
are entities (attributes, features, etc.) that can be associated to events. This association
is done through putting other than zero values in appropriate cells of the description
matrix. The value also tells how strong the association is. For example, if the columns of
the description matrix correspond to the users and the items, then a ratings descriptor
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vector is one by the column of the appropriate user and item and zero otherwise. In
other words it is a record based structure, where the records are the ratings and the
attributes are arbitrary attributes that can be associated with at least one rating (e.g.
users, items, context, user/item attributes). The value of the rating is the target vari-
able. FM assigns a latent feature vector to every attribute (column) and it approximates
the rating value (target variable) as the sum of all pairwise interactions in the latent
feature space between the columns of the attributes, weighted by the product of their
assigned values in the description matrix. Since the description matrix is extremely
sparse, this computation can be done efficiently. Note that although the way of deriving
the model is different, the algorithm could also be represented as a tensor factorization
using pairwise model, i.e. the generalization of PITF. The description matrix way of
representation is more easy to understand when user/item attributes (e.g. genres) are
also used, especially if these attributes are multi-value. The learning can be done via
SGD, adaptive SGD, coordinate descent (the authors refer to this as alternating least
squares, although it is a special case of ALS) and Markov Chain Monte Carlo (MCMC)
optimization. One drawback of FM is that it uses every possible pairwise interaction
that can slow down learning if the number of non-zero attribute values is high (i.e. lot
of side information is used). It is also not clear why some of these interactions are
necessary (e.g. interaction between different metadata values of the same item).

SVDFeature: This method [12, 13] can be considered as a special case of FM,
however it can be more practical in may cases. It can use any information that can be
associated with either the user or the item, but it can not use event context (information
that is associated by both the items and users). It assigns a feature vector to every user
and item ID and to every value of user and item attributes. The user feature vector is
the linear combination of the corresponding user ID’s feature vector and that of the user
attribute values that suite the user. Item feature vectors are created similarly. A rating
is predicted as the dot product of an item and a user feature vector. This model can also
be considered as the sum of pairwise interactions in the latent feature space between
user and item attributes. By getting rid of unnecessary interactions, i.e. interactions
between user attributes or between item attributes its training time is faster than that
of FM. It uses SGD to learn the model parameters.

2.2.2 Implicit methods

Only a few factorization algorithms can handle both implicit feedback and context.
TFMAP [63] aims to maximize mean average precision (MAP) through pairwise ranking
and sampling. It is suggested by [51] that Factorization Machines [54] can be used for
the implicit case with BPR as the objective function, however it is not elaborated and
sampling for BPR is not trivial when D > 2. A very recent method [45] uses Gaussian
processes and can be applied for both explicit and implicit cases.



Chapter 3

Initialization of matrix
factorization

In this chapter I examine the importance of the initialization of matrix factorization
algorithms. I show that if the usual random or zero initialization is replaced by a sim-
ilarity based one, the performance of the matrix factorization improves significantly
[26, 27]. I propose a matrix factorization based initialization method which integrates
additional, possibly external information sources—experiments with context and meta-
data are performed—to calculate the initial weights in the model. The proposed ini-
tialization methodology can be combined with arbitrary implicit feedback MF method
(see e.g. [50, 67]). Therefore it is a general concept for the initialization of matrix fac-
torization methods. In addition to that I also propose the SimFactor and Sim2Factor
algorithms that further improve the quality of the initial vectors [26, 27].

Additional information—such as context, item metadata or information about the
user—can be injected into the matrix factorization via initialization. In this section I
show how to inject metadata and context related information. The methods presented
here can not be considered to be context-aware algorithms, since they do not tailor
the recommendations list according to the value of the context. They however are able
to simply include additional information in the recommender algorithm that enhances
accuracy and can help in overcoming certain problems of collaborative filtering—such
as the item cold-start—without having to switch the recommendation algorithm. The
methods are generic, thus they can be used with any matrix factorization algorithm,
which I demonstrate on the iALS algorithm [30].

3.1 Initialization of matrix factorization

Most of the MF methods are iterative algorithms that start from a random point: the
item and user feature matrices are initialized randomly. After some iterations these
methods converge to a local optimum that depends on the starting point. The hypothesis
is that an appropriate initialization of feature vectors yields that MF methods will
produce more accurate feature vectors and therefore give more accurate predictions.

When investigating the feature vectors of accurate MF models, one can observe that
similar items (e.g. items belonging to the same product category, or episodes of a movie
series) have similar item feature vectors. This suggest that similarity-based initialization
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of feature vectors may result in more appropriate models. The calculation of the initial
item or user feature vectors should obviously be aligned with the learning algorithm
applied.

The first generic initialization method assigns descriptor vectors to the entities (users
or items) that characterize them from a certain aspect. The hypothesis is that similar
items have similar description vectors. Then these descriptor vectors are compressed
together to fit the feature size of the matrix factorization. It is assumed that the relation
of similarities (e.g. ratios, order, etc.) between original description vectors will be carried
over to the compressed description vectors.

The following data will be used to describe the entities:

1. Item metadata vectors: let us consider an indexed set of metadata tags, which
contains all the possible tags that occur in item metadata (can be textual or
categorical). The item metadata vector contains a non-zero value in the ith position
if the ith tag occurs in item’s metadata. One can apply various weighting schemes
(e.g.: tf-idf) to determine the elements of the vectors.

2. User/Item event vectors: a user event vector of SI length indicates with non-
zero values for which item the user has at least one event (analog for items).

3. User/Item context state vectors: let us define the set of context states as
the possible combination of values of context variables. Here we consider only
categorical context variables with finite range. For instance if we take seasonality
as context, and a season is a week and time bands are days, then we have 7 context
states. When more than one context variable is used then the context states are
the Descartes-product of individual context values. I.e. if additionally we store in
another context variable if the purchase was made online or offline, then we have
14 context states. Then the ith element in the user context state vector is non-zero
if the user has at least one event in the ith context state (analog for items).

4. User/Item context-event vectors: the user context-event vectors have length
SC · SI ; each coordinate represents whether user has events on the given item in
the given context state (analog for items).

Remember that most of these vectors are typically very sparse (except the context state
vectors if there are only a few context values). Note that in each of the above cases,
one has several choices in creating the item/user description vectors from the raw data:
vectors may be binary, may contain the frequency, or one may apply normalization or a
weighting scheme.

A matrix, D, is assembled from the appropriate input vectors (row-wise), which is
referred to as the description of the items (DI) or users (DU ). For this an arbitrary but
single data source is selected from the above options; e.g., one may use the item context
state data vectors to form D. In order to make use of the description as initial weights
in a matrix factorization method, one should compress them to be compliant with the
feature size of the MF model. This can be performed by any dimension reduction tech-
niques like PCA [32], matrix factorization, auto-associative multi layer perceptron [35],
etc. These methods minimize the information loss at the compression and simultane-
ously perform noise reduction.
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Here I use two methods for compression. The first is a simple matrix factorization,
the weighted ALS, that minimizes the weighted squared error of the predictions by fixing
one of the feature matrices and computing the rows of the other by using weighted linear
regression. When factorizing item description, only the item feature matrix is kept after
the factorization process (analog for user description), which is then readily used as
initial feature vectors in the iALS algorithm. Due to the alternating nature of learning
in iALS, only one of the feature matrices initialization matters as the other is recomputed
right away. The second method is SimFactor, which is explained in the next section.

3.2 SimFactor algorithm

Standard dimension reduction techniques may distort the original system of similarities
between the entities. Although dimension reduction techniques tend to maintain simi-
larities between the entities to some degree (similar entities are close, different ones are
far away; that is why it can be used for good initializations), the relations between some
entities can be quite different. I aim to efficiently approximate the similarity matrix to
overcome this issue. One could design a method that keeps this property by starting
from the similarity matrix of the users/items. The problem with such an approach is
that it requires the precomputation of the entire similarity matrix, which is computa-
tionally very inefficient. Further, this solution does not scale well, because the matrix
has to be stored in memory for the sake of efficient computation. Even when sparse
data structures are used for storing similarities, the calculation of the similarity matrix
takes a considerable amount of time, when SU or SI is large.

SimFactor is a simple algorithm that compresses the description of the items while
preserves the relations between the original similarities as much as possible. This method
only works for similarity metrics that can be computed via the scalar product of two
(transformed) description vectors. The most commonly used metrics in recommendation
systems like cosine similarity, adjusted cosine similarity or Pearson correlation can be
computed in this way.

The pseudocode of SimFactor is described in Algorithm 3.2.1 (see also Figure 3.1).

Algorithm 3.2.1 SimFactor

Input: D matrix that contains the item or the user description
Output: F matrix that contains the feature vectors of the items or users
procedure SimFactor(D)

1: D′ ← Transform(D)
2: < X,Y >← FactorizeMatrix(D′)
3: Z ← Y TY
4: < U,Λ >← EigenDecomposition(Z)
5: F ∈ RSentities×K

6: for i = 1, . . . , Sentities do
7: Fi =

√
Λi,iXiU

8: end for
9: return F

end procedure
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SimFactor starts with the appropriate transformation of the description matrix
(line 1; e.g. `2-normalization when using cosine similarity, see Section 3.2.2). Next,
in line 2, a matrix factorization is applied on the description, but in contrast to ALS,
both low rank matrices are kept. For the matrix factorization, arbitrary MF method
can be used. Here, I use applied weighted ALS.

The steps performed between lines 3 and 8 are also depicted on Figure 3.1. The
matrix of similarities (S) is the product of the transformed description matrix and its
transpose (S = D′D′T ), while the factor matrices (output of the MF method in line 2)
approximate the transformed description matrix (D′ ≈ XY T ). Therefore the similarity
matrix can be approximated by S ≈ XY TY XT , where Y TY is a K × K symmetric
(non-singular) matrix, thus its eigen-decomposition always exists in the following form:
Y TY = UΛUT . U and Λ are K × K matrices. U contains the eigenvectors, Λ is
singular and has the eigenvalues in its diagonal. Λ =

√
Λ ·
√

Λ, where
√

Λ is also
diagonal and contains the square roots of the eigenvalues. Now the similarity matrix
can be approximated as: S ≈ XU

√
Λ
√

ΛUTXT . Introducing the Sentities ×K matrix
F = XU

√
Λ, this can be rewritten as S ≈ FF T .

In F , every row is a feature vector for an entity and the scalar product of the ith

and jth rows approximates the similarity between the corresponding entities. This way
SimFactor produces low-rank feature vectors that try to preserve the original similarity
values. These feature vectors can be used as the initial features in the iALS algorithm.

3.2.1 Similarity-based similarities – Sim2Factor

One can also define the similarity between entities based on how similar they are to
other entities. Given the similarity matrix of the entities, similarity measures can be
calculated on its rows and these values can be used as entity similarity values. This
approach can sometimes seize actual similarities between entities more precisely, because
even if the original similarity values are inaccurate, the system of those values is often
more consistent.

The computation of the similarity matrix is often not practical or impossible due
to time and memory limitations. Fortunately the SimFactor algorithm can be modi-
fied in a way that enables the approximation of the similarity based similarity values
without the computation of the similarity matrix. This modification is referred to as
Sim2Factor. The computational complexity of SimFactor and Sim2Factor are the same.
Algorithm 3.2.2 describes the method.

Sim2Factor takes description matrix D as an input like SimFactor. The initial steps
are the same: first D is transformed in a way that the scalar product of its rows will
result in the desired similarity value. In the second step (line 2) an arbitrary matrix
factorization is performed. The resulting factor matrices are transformed into the initial
feature vectors (F ) between lines 3–10. The key of the algorithm is that the similarity
based similarity matrix can be calculated as S′ = SST = SS = DDTDDT (S is sym-
metric). By approximating D ≈ XY T we have S′ ≈ XY TY XTXY TY XT . Introducing
Z = Y TY (K ×K) that can be computed efficiently we get S′ ≈ XZXTXZXT . Using
Z ′ = ZXT we can write S′ ≈ XZ ′(Z ′)TXT = XZ ′′XT (Z ′′ is symmetric). Then the
symmetric K × K sized Z ′′ is decomposed into product of two K × K sized matrices
in the same way as in SimFactor (Z ′′ = (U

√
Λ)(U

√
Λ)T ). The initial feature matrix is

F = X(U
√

Λ). The steps of the transformation is also shown on Figure 3.2.
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Figure 3.1: Concept of the matrix transformations in SimFactor
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Algorithm 3.2.2 Sim2Factor

Input: D matrix that contains the item or the user description
Output: F matrix that contains the feature vectors of the items or users
procedure SimFactor(D)

1: D′ ← Transform(D)
2: < X,Y >← FactorizeMatrix(D′)
3: Z ← Y TY
4: Z ′ ← ZXT

5: Z ′′ ← Z ′(Z ′)T = (ZXT )(XZ)
6: < U,Λ >← EigenDecomposition(Z ′′)
7: F ∈ RSentities×K

8: for i = 1, . . . , Sentities do
9: Fi =

√
Λi,iXiU

10: end for
11: return F

end procedure

Note that unlike SimFactor, Sim2Factor does not allow the usage of an arbitrary
similarity metric between the rows of S. The values of S′ will always be the dot products
of the rows of S. This is because the description matrix can not be modified efficiently to
force the usage of other metrics in S′. However, with the modification of the description
matrix, different similarity metrics can be used to approximate S.

3.2.2 Similarity metrics

Different similarity functions can be used to compute the similarity between two de-
scriptor vector and thus get the similarity matrix S. The proper approximation of the
similarities with SimFactor requires an initial transformation of the descriptor vectors, so
the actual similarity values can be computed as the dot product transformed descriptor
vectors. The following similarity functions were used in the experimentation:

1. Dot product similarity: The dot product of the corresponding descriptor vec-
tors.

• Similarity function: sdot(i, j) = 〈Di, Dj〉
• Transformation: D′i = Di

• Remarks: No transformation is required.

2. Cosine similarity: The cosine similarity of the corresponding descriptor vectors,
i.e. their dot product normalized by their length.

• Similarity function: scos(i, j) =
〈Di,Dj〉

‖Di‖2·‖Dj‖2

• Transformation: D′i = Di
‖Di‖2

• Remarks: The descriptor vectors’ lengths are normalized to one.

3. Correlation: Correlation between two descriptor vectors. Correlation is often
better at describing similarities between entities than cosine similarity.
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• Similarity function: scorr(i, j) =

〈
Di−1·

∑
l Di,l
L

,Dj−1·
∑

l Dj,l
L

〉
∣∣∣∣∣∣∣∣Di−1·

∑
l Di,l
L

∣∣∣∣∣∣∣∣
2

·
∣∣∣∣∣∣∣∣Dj−1·

∑
l Dj,l
L

∣∣∣∣∣∣∣∣
2
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• Transformation: D′i =
Di−1·

∑
l Di,l
L∣∣∣∣∣∣∣∣Di−1·

∑
l Di,l
L

∣∣∣∣∣∣∣∣
2

• Remarks: This transformation yields a fully specified D′ matrix, where the
majority of the elements in each row is the same, but their value differ in dif-
ferent rows. Therefore D′ can be efficiently stored. The matrix factorization
method used in the initialization must also handle the above property of the
similarity matrix efficiently. The weighted ALS fulfills this condition.

4. Binarized correlation: Correlation matrices can be ill-conditioned e.g. when
the values of different rows of the description matrix are from different scale. In
such case one may opt for the correlation of the binarized description vectors. For
this, D should be first binarized and then the above transformation applied.

• Similarity function: sb.corr(i, j) =

〈
Bi−1·

∑
l Bi,l
L

,Bj−1·
∑

l Bj,l
L

〉
∣∣∣∣∣∣∣∣Bi−1·

∑
l Bi,l
L

∣∣∣∣∣∣∣∣
2

·
∣∣∣∣∣∣∣∣Bj−1·

∑
l Bj,l
L

∣∣∣∣∣∣∣∣
2

, where Bi,l =

1− IDi,l=0

• Transformation: D′i =
Bi−1·

∑
l Bi,l
L∣∣∣∣∣∣∣∣Bi−1·

∑
l Bi,l
L

∣∣∣∣∣∣∣∣
2

• Remarks: First the descriptors are binarized, then the same transformation
is applied as with the normal correlation.

3.2.3 Composite initialization

Several possible description matrices were mentioned in Section 3.1 using different in-
formation sources. It is possible that by combining these information, higher accuracy
can be achieved. There are several ways to combine them.

The first method puts the description matrices one after another, so the description
vector of an item is the concatenation of the description vectors (D = (D1|D2| . . . |Dn),
here | denotes the concatenation). The method requires matrices to have the same row
size that is achieved by imputing rows with zeroes into smaller matrices. Weighting
can also be used: D = (w1D1|w2D2| . . . |wnDn) The description matrix created in this
manner has many columns and might be hard to factorize precisely.

The second approach defines the initial feature matrix as a weighted combination of
the feature matrices created using different descriptions: F = w1F1+w2F2+ . . .+wnFn.
The size of all Fi should be the same.

3.2.4 Complexity

Each of the presented initialization methods start with the factorization of the item–
descriptor matrix. Since the zeroes in this matrix should be taken into account to get
a good approximation of the similarities, using implicit ALS is a natural choice as the
factorization algorithm. The cost of this initial factorization is O(K3(SD+SE)+K2D+)
where SD is the number of possible descriptors (e.g.: number of metadata, number of
context-states, etc), SE is the number of entities (e.g. items or users) and D+ is the
number of non-zero values in the descriptor matrix D.
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The complexity of SimFactor—in addition to the initial matrix factorization—is
O(K2SD + K3 + K2SE), where the terms correspond to the calculation of Y TY , find-
ing the eigen-decomposition and calculating F = XU

√
Λ, respectively. The cost of

Sim2Factor scales similarly to SimFactors (the only difference is in the constant mul-
tiplier). This O(K2SD + K3 + K2SE) cost of the transformation steps is negligible
compared to the O(K3(SD + SE) + K2D+) cost of the initial matrix factorization.
Therefore the bottleneck of the method is the factorization of the description matrix.
If SD is the same order of magnitude as SU or SI then the cost of the initialization
is roughly the same as that of the factorization of the user–item matrix therefore the
total running time doubles. However this is similar to using a model with either more
epochs (iterations) or with slightly higher number of factors and without initialization
(and therefore without the additional advantages provided by it). In practice the run-
ning time of the implicit ALS is pretty good for low factor models and it can be further
enhanced by approximating the ALS algorithm [50, 67]. These enhancements also carry
over to the factorization of the description matrix.

3.3 Experiments

Five datasets were used for the experiments. Grocery, TV1, TV2, LastFM (see Sec-
tion 1.4 for details) and MovieLens 10M [19]. MovieLens is an explicit feedback based
dataset, therefore it has to be transformed to simulate implicit feedback. Two sepa-
rate transformations were done by (1) keeping only the 5 star ratings (referred to as
ML5) and (2) keeping ratings with values 4.5 and 5 as positive feedbacks (referred to
az ML4.5). We used the 7 days for testing (from 01/12/2008) and the earlier events for
training.

Various data sources were used when creating the description matrix (see details
in Section 3.1). For contextual information, seasonality was chosen, because the time
stamp is available in almost every data set. Different seasons and time band lengths
were used and I kept only the best results.

Not all description matrices were used for every dataset. For example sufficient
metadata is only available for Grocery. I also found that context-state and context-
event descriptors often work similarly, therefore we used the latter only for TV1 and
Grocery.

In the first experiment I compared weighted ALS and SimFactor to characterize their
similarity preserving capability. I drew randomly 2 times 10 000 entity pairs, calculated
the original and the approximated similarity values and counted when the later similarity
pairs matched their original order. RMSE of the similarity value prediction was also
measured.

The results in Table 3.1 show that SimFactor was more accurate than weighted
ALS in every experiment. The improvement in RMSE is usually over 80% except when
the description matrix is very sparse. In addition to better accuracy, SimFactor also
preserves the original relations of the similarities better than the weighted ALS. One
can observe that the results depend greatly on the description matrix.

Besides recall, I used MAP for evaluation. The cut-off was set to 10, 20 and 50. Low-
factor models were used as they are of practical use. As baseline, several experiments
were run with different random initializations and the best result was chosen. In other
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Table 3.1: Accuracy of the similarity prediction

Database Input data
Non-zero

Method RMSE
RMSE Order

ratio in D improvement match

Grocery

Item
0.09%

ALS 0.2683
85.51%

67.60%
metadata SimFactor 0.0389 85.38%

Item
22.81%

ALS 0.4923
96.09%

92.97%
context-state SimFactor 0.0192 98.29%

Item
0.01%

ALS 0.0332
23.47%

63.24%
context-event SimFactor 0.0254 61.30%

User
21.97%

ALS 0.3363
99.03%

89.53%
context-state SimFactor 0.0033 99.92%

User
0.04%

ALS 0.0425
49.34%

66.70%
context-event SimFactor 0.0215 74.17%

TV1

Item
66.10%

ALS 0.5056
97.16%

94.32%
context-state SimFactor 0.0144 97.49%

Item
0.01%

ALS 0.0602
0.00%

61.57%
context-event SimFactor 0.0602 61.59%

User
16.29%

ALS 0.3541
96.78%

87.30%
context-state SimFactor 0.0114 99.54%

User
0.04%

ALS 0.1879
20.82%

57.94%
context-event SimFactor 0.1488 57.51%

TV2

Item
42.02%

ALS 0.4426
94.78%

94.97%
context-state SimFactor 0.0231 97.84%

User
5.08%

ALS 0.2669
48.15%

80.00%
context-state SimFactor 0.1384 80.78%

MovieLens (5)

Item
39.08%

ALS 0.3166
86.59%

90.40%
context-state SimFactor 0.0425 94.26%

User
13.53%

ALS 0.3830
99.78%

85.06%
context-state SimFactor 0.0009 100.00%

MovieLens (4.5)

Item
47.05%

ALS 0.3380
88.02%

91.62%
context-state SimFactor 0.0405 95.04%

User
11.74%

ALS 0.3316
75.76%

83.61%
context-state SimFactor 0.0804 95.44%

LastFM

Item
25.87%

ALS 0.2892
86.87%

84.66%
context-state SimFactor 0.0380 96.52%

User
79.69%

ALS 0.5214
97.61%

83.07%
context-state SimFactor 0.0125 98.75%

words the baseline is the vanilla implicit ALS. I used weighted ALS, SimFactor and
Sim2Factor for initialization (the latter two apply weighted ALS as their first step) to
create the initial feature vectors. Note that since iALS is an alternating method that
discards the results of previous computations when calculating the feature vectors one
cannot initialize both item and user features at once as one of them will be discarded in
the first step. I ran multiple experiments for each input data type for the initialization
and kept only the best for each input data type.
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Table 3.2: Recall@50 values for top5 methods per dataset

Dataset Description Similarity Algorithm Value Improvement
function over baseline

Grocery

User context-state Cos. Sim. MF 0.1612 8.40%
User context-state Correlation MF 0.1611 8.33%
User context-state Correlation SimFactor 0.1604 7.85%
User context-state Cos. Sim. SimFactor 0.1602 7.74%
User context-state Bin. Corr. MF 0.1601 7.63%
Random initialization (baseline) 0.1458 N/A

TV1

User context-event Cos. Sim. Sim2Factor 0.2924 7.69%
User context-event Bin. Corr. MF 0.2924 7.69%
User context-event Correlation MF 0.2924 7.69%
User context-event Bin. Corr. Sim2Factor 0.2921 7.57%
User context-event Correlation Sim2Factor 0.2921 7.57%
Random initialization (baseline) 0.2716 N/A

TV2

User context-state Cos. Sim. MF 0.4223 3.73%
User context-state Cos. Sim. SimFactor 0.4210 3.42%
User context-state Scalar Prod. SimFactor 0.4210 3.42%
User context-state Correlation MF 0.4209 3.41%
User context-state Bin. Corr. MF 0.4205 3.29%
Random initialization (baseline) 0.4071 N/A

ML (5)

User context-state Bin. Corr. SimFactor 0.1656 28.57%
User context-state Cos. Sim. SimFactor 0.1626 26.19%
User context-state Cos. Sim. MF 0.1626 26.19%
Item context-state Bin. Corr. Sim2Factor 0.1626 26.19%
User context-state Correlation SimFactor 0.1564 21.43%
Random initialization (baseline) 0.1288 N/A

ML (4.5)

User context-state Scalar Prod. Sim2Factor 0.1334 19.42%
User context-state Scalar Prod. SimFactor 0.1312 17.48%
User context-state Cos. Sim. SimFactor 0.1302 16.50%
User context-state Bin. Corr. Sim2Factor 0.1291 15.53%
User context-state Bin. Corr. SimFactor 0.1291 15.53%
Random initialization (baseline) 0.1117 N/A

LastFM

User context-state Bin. Corr. Sim2Factor 0.0950 113.43%
Item context-state Correlation Sim2Factor 0.0947 112.66%
Item context-state Cos. Sim. Sim2Factor 0.0941 111.25%
Item context-state Scalar Prod. Sim2Factor 0.0941 111.25%
Item context-state Scalar Prod. SimFactor 0.0932 109.34%
Random initialization (baseline) 0.0445 N/A

Table 3.2 and Table 3.3 summarize the results of our experiments: the top5 initial-
ization methods for each dataset by recall@50 and MAP@50 are shown. Other metrics
produce similar results (not shown here). One can observe that all three proposed initial-
ization methods clearly outperform the random initialization. All three methods have
similar performance w.r.t. recall, although SimFactor and Sim2Factor seem to have a
slight edge over the pure feature based initialization. W.r.t. MAP, the dominance of
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Table 3.3: MAP@50 values for top5 methods per dataset

Dataset Description Similarity Algorithm Value Improvement
function over baseline

Grocery

User context-state Cos. Sim. SimFactor 0.1315 8.27%
User context-state Cos. Sim. MF 0.1295 6.65%
User context-state Correlation MF 0.1291 6.29%
User context-state Bin. Corr. MF 0.1283 5.60%
User context-state Correlation SimFactor 0.1275 4.94%
Random initialization (baseline) 0.1194 N/A

TV1

Item context-event Bin. Corr. Sim2Factor 0.0444 24.23%
Item context-event Correlation Sim2Factor 0.0444 24.23%
Item context-event Cos. Sim. Sim2Factor 0.0437 22.40%
Item context-event Scalar Prod. Sim2Factor 0.0437 22.40%
Item context-state Cos. Sim. MF 0.0433 21.36%
Random initialization (baseline) 0.0357 N/A

TV2

Item context-state Correlation SimFactor 0.0770 7.83%
Item context-state Cos. Sim. SimFactor 0.0770 7.82%
User context-state Bin. Corr. SimFactor 0.0764 6.88%
User context-state Scalar Prod. MF 0.0763 6.77%
User context-state Cos. Sim. SimFactor 0.0761 6.50%
Random initialization (baseline) 0.0714 N/A

ML (5)

User context-state Cos. Sim. Sim2Factor 0.0507 19.80%
User context-state Scalar Prod. Sim2Factor 0.0501 18.49%
User context-state Bin. Corr. Sim2Factor 0.0501 18.37%
User context-state Bin. Corr. MF 0.0497 17.50%
Item context-state Bin. Corr. SimFactor 0.0488 15.34%
Random initialization (baseline) 0.0423 N/A

ML (4.5)

User context-state Scalar Prod. SimFactor 0.0333 50.62%
Item context-state Scalar Prod. SimFactor 0.0329 48.81%
User context-state Bin. Corr. Sim2Factor 0.0320 44.70%
Item context-state Correlation Sim2Factor 0.0314 42.09%
Item context-state Scalar Prod. MF 0.0313 41.45%
Random initialization (baseline) 0.0221 N/A

LastFM

User context-state Bin. Corr. MF 0.1474 309.44%
User context-state Bin. Corr. Sim2Factor 0.1369 280.19%
Item context-state Correlation MF 0.1305 262.42%
Item context-state Scalar Prod. Sim2Factor 0.1299 260.74%
Item context-state Cos. Sim. MF 0.1278 255.06%
Random initialization (baseline) 0.0360 N/A

SimFactor and Sim2Factor is more apparent. Since the additional computations required
for these advanced methods is negligible compared to the time of the factorization, it
is generally worth to use these. As for the similarity metric, correlation and binarized
correlation is often more efficient than cosine similarity.

Figure 3.3 shows the improvement achieved in recall by the top5 methods on each
dataset with different cutoffs (10, 20 and 50). The improvement over the baseline is
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Figure 3.3: Recall improvement over the baseline at cutoffs 10, 20 and 50 for each
dataset. Each base color denotes a dataset, the three lines of similar color show the max-
imal, the average and the minimal improvement by the top5 methods for that dataset.

greater at shorter lists, therefore a proper initialization can be better exploited at the
practically more important case.

Note that the top performing methods w.r.t. both evaluation metrics on the Grocery
dataset use context for initialization (opposed to metadata). This suggest that context,
like seasonality, can efficiently discriminate between entities, and this can be exploited
in weight initialization. Users have routines and people with similar routines are similar
and might have similar taste. Similarly, different item types are typically consumed
in different time bands; for example adult programs mostly viewed late night. The
distribution of the events for an entity in the time bands appears to be an efficient
descriptor.
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Figure 3.4: Improvement by the composite initialization (over the better of the members;
using the same initialization strategy) on short recommendation lists
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Experiments with composite initialization were also performed on Grocery, using
the context-state and metadata description matrices. When using the concatenation of
description matrices, none of the evaluation metric could be improved over the better
initialization. On the other hand, using the weighted sum of initial vectors provided
better results than both initialization methods. Figure 3.4 shows the improvement by
method and metric. As expected, the pure feature based input can benefit more from
composite initialization.

3.4 Summary

In Chapter 3 I proposed initializing matrix factorization using information on the items
(or users) to increase recommendation accuracy. The methods and the results described
in this chapter were published in [26, 27] and the following theses are based on them.

Thesis 1.1 I proposed to initialize the feature matrices of matrix factorization
methods based on the similarities of its entities instead of starting from randomly
initialized matrices. The initialization scheme is generic and thus can be applied
to any matrix factorization. It consists of two steps: (1) descriptor vectors are
assigned to the entities; (2) the descriptors are compressed to fit the size of the
feature vectors. I applied the scheme on implicit ALS and showed on five datasets
that this type of initialization can increase the recommendation accuracy measured
by recall and MAP.

Thesis 1.2 I proposed the SimFactor algorithm that yields feature vectors, which
preserve the original similarities between entities more accurately. SimFactor does
not require the computation of the similarity matrix (which would be infeasible). I
showed on five datasets that similarities are better estimated with this algorithm as
with pure compression of the descriptor vectors. I also showed that feature vectors
yielded by SimFactor are generally better for initializations than those produced by
pure compression.

Thesis 1.3 I proposed the Sim2Factor algorithm that is able to yield feature vec-
tors whose similarity approximates the similarity between entities, based on how
similar they are to the rest of the entities. Sim2Factor does not require the compu-
tation of the similarity matrix. I showed that feature vectors of this kind are useful
for initialization.

Thesis 1.4 I proposed to use context for describing entities. I showed that context
based descriptors are better for initialization than metadata based ones. I also
showed that the weighted combination of context and metadata based initializations
can further improve the recommendation accuracy.



Chapter 4

Context-aware factorization

In this chapter I introduce two context-aware factorization algorithms for the implicit
feedback based recommendation problem, named iTALS [24] and iTALSx [22, 23].

4.1 Modeling of the implicit task

Both algorithms assume data in SA-MDM (see 1.2.1), i.e. data that is representable in
an ND dimensional tensor R. One dimension of the tensor corresponds to the users (user
IDs), one to the items (item IDs), while the other ND − 2 dimension is associated with
different context dimensions. R contains only zeroes and ones1. Let a given element of
the tensor be ru,i,c1,··· ,cND−2 = 1 if user u has (at least one) event on item i while the

context-state of jth context dimension was cj . Due to its construction, all elements of R
are known (i.e. there are no missing “ratings”), however the proportion of ones is very
low. This construction of the preference tensor basically assumes that the presence of
an event signals positive preference and the absence of an event (i.e. missing feedback)
is a sign of negative preference.

Since the missing feedback is clearly a weaker signal of negative preference than the
presence of positive feedback (see Section 1.1.2) I construct the W(i1, . . . , iND

) weight
function that assigns a real value to every possible entity combination. In practice, the
construction of W(·) depends on the problem, and can also affect the complexity of the
training. In order to be able to train the model efficiently, W(·) is restricted as follows:

W : (i1, . . . , iND
)→ R

W(i1, . . . , iND
) =

{
w1(i1, . . . , iND

)� w0(i1, . . . , iND
), if ri1,...,iND

= 1

w0(i1, . . . , iND
) =

∏ND
j=1

(
µ(j)v

(j)
ij

+ γ(j)
)
, otherwise

(4.1)

Where w1(i1, . . . , iND
) is the weight of entity combinations of the training set and

w0(i1, . . . , iND
) is the weight of missing entity combinations. Both weight functions

depend on the actual entities. Note that w0(·) is required to be factorized by the di-

mensions. v
(j)
ij

is a weight for the (ij)
th entity in the jth dimension. This weight can

1Note that the algorithms do not require this constraint, arbitrary values could be used for positive
and negative preferences. However the effect of using different values for these parameters is not discussed
here and thus we assume zeroes and ones from this point onwards.

39
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depend on any property of the entity. µ(j) and γ(j) are constants for the jth dimension.
Therefore the weight by a given dimension can be either a constant or depend on a
property of the actual entity. Although this sufficiently generic weight function class
enables using different weighting schemes, the exploration of its effect is left to future
research.

For the sake of simplicity, here I use a simple weight function by setting µ(j) = 0 and
γ(j) = 1 for all j, and setting w1(i1, . . . , iND

) = α·#(i1, . . . , iND
). That is w0(·) = w0 = 1

for every entity combination and w1(·) is proportional with the number of occurrences
of the corresponding combination in the training set. This basic weighting assumes that
entity combinations are missing at completely random [38] and that it is more important
to accurately predict for entity combinations with actual feedback than for ones with no
feedback. This weighting scheme is the generalization of the concept introduced in [30]:

W(i1, . . . , iND
) =

{
w1(i1, . . . , iND

) = α ·#(i1, . . . , iND
)� w0, if ri1,...,iND

= 1

w0(i1, . . . , iND
) = w0, otherwise

(4.2)

The algorithms assign one feature matrix to each dimension of the tensor. The
feature matrix M (d) for the dth dimension is of size K ×Sd. The columns of the feature
matrix are the feature vectors assigned to the entities of the dimension. K is the number
of features that is a parameter of the algorithms. The feature vectors are used to predict
the preferences of a user on an item under the configuration of contexts. The algorithms
optimize by a loss function using an optimization strategy.

Both algorithms use pointwise ranking, i.e. the estimation of the preference values
in R with their importance determined by W. The weighted sum of squared loss is
appropriate for this task, hence I use it as the loss function of iTALS and iTALSx. To
lessen the effects of overfitting I use `2 regularization by adding the sum of the squares
of model parameters to the loss:

L =

S1,...,SND∑
i1=1,...,iND

=1

W(i1, . . . , iND
)(ri1,...,iND

− r̂i1,...,iND
)2 +

ND∑
d=1

Si∑
i=1

λd,i

∣∣∣∣∣∣M (d)
i

∣∣∣∣∣∣2
2

(4.3)

Note that the regularization coefficient can be different for different feature vectors.
Here I use coefficients proportional to the support of the given entity with different

ratios for dimensions, similarly to [48]. Thus λd,i = λd ·N
(d)+
i and λd values are hyper-

parameters of the algorithm.

Optimization is done via Alternating Least Squares (ALS). In ALS, feature matrices
are computed in an alternating fashion. One matrix is computed at a given time and all
but the currently computed matrix are fixed. The efficient usage of ALS with implicit
problems is not straightforward, although it is possible with the smart separation of
computations.

The key difference between iTALS and iTALSx is the preference model, i.e. the
expression used to compute r̂i1,...,iND

. This however also affects how the computations
can be done efficiently. The following two chapters describe preference models and the
derivation of the algorithms in details.
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4.2 iTALS

The iTALS algorithm estimates the preferences of user u on item i under the given
values of the context dimensions as sum of the values in the Hadamard products (also
known as elementwise product) of the corresponding feature vectors. To be less precise,
the preference is given by the dot product between the ND corresponding vectors. This
model is referred to as the N-way interaction model (or N-way model for short). The
following expression describes the model formally:

r̂i1,...iND
= 1T

(
M1
i1 ◦M

2
i2 ◦ · · · ◦M

ND
iND

)
+

ND∑
d=1

b
(d)
id

(4.4)

Note that the expression for r̂ contains biases (b
(d)
id

). Latent feature models often
use biases to capture offsets in the data and thus be able to learn better. However
biases can be incorporated in the feature vectors by reserving an additional coordinate
for each dimension in the feature vectors (i.e. using feature vectors of K +ND length)
and setting all but the dth new parameter in these vectors to one in the dth dimension’s
feature matrix. This way, the dth feature of a feature vector in the feature matrix of
the dth dimension will contain the bias value. With careful computations, the usage of
feature vectors of size K+1 is sufficient. Thus computing the model with K features and
bias can be traced back to computing a biasless model with K + 1 features. Therefore,
I will exclude biases from the models and computations from now on, in order to have a
clearer presentation. Thus, the model of iTALS is described by the following expression
(which can implicitly include the biases):

r̂i1,...iND
= 1T

(
M1
i1 ◦M

2
i2 ◦ · · · ◦M

ND
iND

)
(4.5)

Figure 4.1 depicts the concept behind the model for ND = 3. Generally, this model
assumes that all dimensions interact with every other dimension and their interaction re-
sults in a preference value. From the recommendation perspective, this model reweights
the user–item interaction with a context-configuration dependent feature vector (that is
the product of more than one feature vectors if ND > 3).

4.2.1 Derivation of iTALS

Following the ALS scheme, all but one matrix is fixed at a given time during the learning.
All feature matrix computations follow the exact same steps. Therefore I demonstrate
the steps for computing M (1) (i.e. the first feature matrix) out of convenience. The
loss from equation (4.3) is convex in the non-fixed parameters (i.e. M (1)), therefore it
reaches its minimum in M (1) where its partial derivative with respect to M (1) is zero.
The partial derivative of L in M (1) is separable by the columns of the feature matrix,
thus each feature vector can be computed separately. Without the loss of generality, I

show the steps for computing the first feature vector (M
(1)
1 )) of the feature matrix. The

steps for other feature vectors are the same.

The partial derivative of L with respect to M
(1)
1 :

∂L

∂M
(1)
1

= −2
(
r1,i2,...,iND

− r̂1,i2,...,iND

) ∂r̂1,i2,...,iND

∂M
(1)
1

+ 2λ1,1M
(1)
1 (4.6)
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Figure 4.1: Concept of the N-way model of iTALS with 3 dimensions of the classical
user–item–context setting.

By substituting the model from equation (4.5):

∂L

∂M
(1)
1

=− 2

S2,...,SND∑
i2=1,...,iND

=1

W(1, i2, . . . , iND
)r1,i2...,iND

(
M

(2)
i2
◦ · · · ◦M (ND)

iND

)
︸ ︷︷ ︸

O

+

+ 2

S2,...,SND∑
i2=1,...,iND

=1

W(1, i2, . . . , iND
)
(
M

(2)
i2
◦ · · · ◦M (ND)

iND

)(
M

(2)
i2
◦ · · · ◦M (ND)

iND

)T
︸ ︷︷ ︸

I

M
(1)
1 +

+ 2λ1,1M
(1)
1

(4.7)

The computation of O (i.e. the first part of (4.7)) is efficient since most of the
members in the sum are zeroes, because most of the preference values are zeroes2.
However the computation of I is expensive as it requires summing over every possible
entity combination from the 2 . . . ND dimensions. Therefore the computation of I is
separated into two parts by using W(i1, i2, . . . , iND

) = w0 + w′(i1, i2, . . . , iND
):

2This does not apply if negative preference values are set to other values. However efficient compu-
tations are still possible, using steps similar to efficiently computing I
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I =w0

S2,...SND∑
i2=1,...,iND

=1

(
M

(2)
i2
◦ · · · ◦M (ND)

iND

)(
M

(2)
i2
◦ · · · ◦M (ND)

iND

)T
︸ ︷︷ ︸

J

+

+

S2,...,SND∑
i2=1,...,iND

=1

w′(1, i2, . . . , iND
)
(
M

(2)
i2
◦ · · · ◦M (ND)

iND

)(
M

(2)
i2
◦ · · · ◦M (ND)

iND

)T
︸ ︷︷ ︸

J ′

(4.8)

J ′ can be efficiently computed, as most members of this sum are zeroes, because
w′(1, i2, . . . , iND

) =W(1, i2, . . . , iND
)−w0 is zero if there is no event for the given entity

combination. Note that while J ′ depends on which feature vector is being computed,
J is the same for all columns of M (1) and thus can be precomputed before computing
M (1). The efficient computation requires us to realize that:

Jj,k =w0

 S2,...,SND∑
i2=1,...,iND

=1

(
M

(2)
i2
◦ · · · ◦M (ND)

iND

)(
M

(2)
i2
◦ · · · ◦M (ND)

iND

)T
j,k

=

=w0

S2,...,SND∑
i2=1,...,iND

=1

(
M

(2)
j,i2
· . . . ·M (ND)

j,iND

)(
M

(2)
k,i2
· . . . ·M (ND)

k,iND

)
=

=w0

(
S2∑
i2=1

M
(2)
j,i2
M

(2)
k,i2

)
· . . . ·

 SND∑
iND

=1

M
(ND)
j,iND

M
(ND)
k,iND


(4.9)

Thus the computation of J can be done as follows:

J = w0

(
S2∑
i2=1

M
(2)
i2

(
M

(2)
i2

)T)
︸ ︷︷ ︸

C(2)

◦ · · · ◦

 SND∑
iND

=1

M
(ND)
iND

(
M

(ND)
iND

)T
︸ ︷︷ ︸

C(ND)

(4.10)

Note that J is computed from the elementwise products of K ×K matrices. These
matrices are the autocorrelation matrices of the feature matrices of the other dimensions.
This observation entails that the autocorrelation matrices should be precomputed thus
the computation of J will be fast. Also, the autocorrelation matrix of the dth dimension
must be recomputed after the corresponding feature matrix is updated.

After efficiently computing I = J + J ′ and O, ∂L

∂M
(1)
1

= 0 can be solved for M
(1)
1 as

follows3:

M
(1)
1 = (I + λ1,1I)−1O (4.11)

The pseudocode of iTALS (implicit tensor ALS) is given in Algorithm 4.2.1. The
pseudocode follows the deduction above. Autocorrelation matrices are initially com-
puted in line 3. The column independent part of equation (4.8) is created in line 7. The

3With `2 regularization. Here I denotes the identity matrix.
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column dependent parts are added in lines 12–18 and the desired column computed in
line 20. This step also adds regularization to avoid numerical instability and overfitting
of the model. After each column of M (i) is computed, the corresponding autocorrelation
matrix, C(i) is also recomputed (line 22).

Algorithm 4.2.1 Pseudocode of the iTALS algorithm

Input: R: a ND dimensional S1 × · · · × SND
sized tensor of zeroes and ones;

W: a weight function as defined in equation (4.2);
K: the number of features; E: number of epochs;
{λd}d=1,...,ND

: regularization coefficients per dimension;

Output: {M (i)}i=1,...,ND
: K × Si sized low rank matrices;

procedure iTALS(R, W , K, E, {λd})
1: for i = 1, . . . , ND do
2: M (i) ← Random K × Si sized matrix
3: C(i) ←M (i)(M (i))T

4: end for
5: for e = 1, . . . , E do
6: for i = 1, . . . , ND do
7: J ← w0 · C(1) ◦ · · · ◦ C(i−1) ◦ C(i+1) · · · ◦ C(ND)

8: for j = 1, . . . , Si do
9: O ← 0

10: J ′ ← 0
11: n← 0
12: for all {r | r = rj1,...,ji−1,j,ji+1,...,jND

, r 6= 0} do
13: w ←W(j1, . . . , ji−1, j, ji+1, . . . , jD)− w0

14: v ←M
(1)
j1
◦ · · · ◦M (i−1)

j1−1
◦M (i+1)

ji+1
◦ · · · ◦M (D)

jD

15: J ′ ← J ′ + wvvT

16: O ← O + (w + w0)v
17: n← n+ 1
18: end for
19: I ← J + J ′
20: M

(i)
j ← (I + λinI)−1O

21: end for
22: C(i) ←M (i)(M (i))T

23: end for
24: end for
25: return {M (i)}i=1,...,ND

end procedure

4.2.2 Complexity

The complexity of one epoch (i.e. computing each matrix once) is O(NDN
+K2 +∑ND

i=1 SiK
3) (see Table 4.1 for breakdown). iTALS scales linearly with the number of

transactions in the training set. Due to the large number of transactions and the growth
rate of the set of transactions, this property is very beneficial in practice. The algorithm
scales cubically with the number of features in theory. However NDN

+ �
∑ND

i=1 Si and
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K is small in practice, thus the first term dominates. Therefore the algorithm scales
quadratically with K in practice (see Section 4.4.2 for empirical results on running
times).

Table 4.1: Complexity of computations for iTALS

Task Complexity Comments

Computations required per column (e.g.: M
(1)
1 )

Computation of O
and J ′

O(N
(1)+
1 K2) N (1)+ is the number of training events, in

which the first entity of the first dimension is
present (i.e. support of this entity). Due to
the definitions of R andW, each of these sums
will have N (1)+ non-zero members. The com-
putation of the update vector in line 14 takes
O(KND) time, while the updates themselves
(lines 15–16) take O(K) and O(K2) times for
O and J ′ respectively. In practice ND � K.

Solving for M
(1)
1 O(K3) This requires to solve a K ×K sized system of

linear equations (line 20).

Total complexity of the above for all columns of M (1):
O(N+K2 + S1K

3), (N+ is the number of transactions)

Computations once per computing a feature matrix (e.g.: M (1))

Computing J O(NDK
2) Assembled from C(i) autocorrelation matrices,

using all but the one corresponding to the cur-
rently computed feature matrix (line 7). (Note:
ND � N+)

Recomputing C(1) O(S1K
2) Autocorrelation matrices need to be recom-

puted after finishing the recomputation of the
feature matrix (line 22). (Note: S1 � N+)

Total complexity of an epoch: O(NDN
+K2 +

∑ND
i=1 SiK

3)

4.2.3 Results

iTALS is compared to the non context-aware implicit matrix factorization [30], referred
to here as iALS. I used seasonality and sequentiality as the context (see Section 1.4.2
for detailed description), but only one context dimension was used at a time for iTALS.
A context-aware baseline, by the name of iCA was also created to separate the effects of
using a context and that of using iTALS. The iCA baseline is a prefiltering method. For
each context state it trains an iALS model using only the events with the appropriate
context. E.g. for the VoD we defined 6 time bands within the season, thus iCA trains
6 models. The context of the recommendation request (e.g. time of day) selects the
model for the prediction. This baseline treats context-states independently. Due to the
separate model training, iCA is not practical when the number of context-states is high.
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Table 4.2: Recommendation accuracy of the iTALS algorithm, compared to iALS and
a context-aware baseline

Dataset K iALS iCA (S) iTALS (S) iTALS (Q)

Grocery
20 0.0649 0.0764 (+17.74%) 0.0990 (+52.59%) 0.1220 (+88.02%)
40 0.0714 0.0841 (+17.85%) 0.1071 (+50.01%) 0.1339 (+87.59%)
80 0.0861 0.1072 (+24.43%) 0.1146 (+33.04%) 0.1439 (+67.05%)

TV1
20 0.1189 0.0965 (-18.88%) 0.1167 (-1.85%) 0.1417 (+19.15%)
40 0.1111 0.0935 (-15.81%) 0.1235 (+11.20%) 0.1515 (+36.38%)
80 0.0926 0.0825 (-10.97%) 0.1167 (+25.99%) 0.1553 (+67.60%)

TV2
20 0.2162 0.1747 (-19.20%) 0.1734 (-19.82%) 0.2322 (+7.40%)
40 0.2161 0.1672 (-22.60%) 0.2001 (-7.41%) 0.3103 (+43.60%)
80 0.2145 0.1615 (-24.73%) 0.2123 (-1.02%) 0.2957 (+37.82%)

LastFM
20 0.0448 0.0523 (+16.94%) 0.0674 (+50.56%) 0.1556 (+247.57%)
40 0.0623 0.0796 (+27.84%) 0.0888 (+42.61%) 0.1657 (+166.07%)
80 0.0922 0.1168 (+26.66%) 0.1290 (+39.90%) 0.1864 (+102.18%)

VoD
20 0.0633 0.0703 (+10.98%) 0.0778 (+22.79%) 0.1039 (+64.07%)
40 0.0758 0.0816 (+7.74%) 0.0909 (+19.96%) 0.1380 (+82.18%)
80 0.0884 0.0884 (+0.04%) 0.0996 (+12.73%) 0.1723 (+94.99%)

Therefore I only trained it using seasonality.

Table 4.2 shows the recommendation accuracy of iALS, iCA and iTALS w.r.t. re-
call@20 on five datasets using 20, 40 and 80 features. iTALS with seasonality and
sequentiality is depicted as iTALS (S) and iTALS (Q) respectively. The improvement
over iALS is written in brackets.

The results indicate the the usage of context indeed increases recommendation ac-
curacy. 8 out of 15 cases iCA is better than the non context-aware iALS and is on
par once. Although iCA is worse on TV1 and TV2 than iALS, it is mostly due to
iCA handling the context-states independently. With sparse datasets, the separation by
context-states often results in more sparse data that is harder to learn.

The accuracy of iTALS is almost always significantly higher than that of iALS (26
of 30) or iCA (14 of 15). There are four cases in which iTALS is worse than iALS: all
with seasonality on TV1 with K = 20 and on TV2. Note however that as the number
of features increases, iTALS outperforms iALS on TV1 and the difference decreases on
TV2. This is due to the N-way model that is basically a weighted dot product of the user
and item features where the weight vector depends on the context state. If the number
of features is low, a single latent feature is more general (i.e. it blurs more aspects of
the item/user together), therefore properly reweighting the user–item relation is hard.
This is especially true if the training data is very sparse, which is the case with TV2.

Sequentiality resulted in better accuracy than seasonality in all of these experiments.
Using sequentiality as the context for recommendations was introduced by me in [24].
The success of sequentiality can be attributed to identifying association rule like pat-
terns of purchasing certain items one after the other. Then iTALS adapts these in a
personalized manner by modifying the base user–item interaction.



4.3. ITALSX 47

4.3 iTALSx

The iTALSx algorithm is similar to iTALS, but uses a different model for preference
estimation. iTALSx is originally designed to work with three dimensions (users, items
and one context). The preference of user u on item i under the given value of the context
dimension is predicted as the sum of the dot products between the user and item feature
vector, the user and context feature vector and the item and context feature vector. This
model is referred to as the pairwise interaction model or pairwise model for short. There
are two generalizations of this model for higher dimensions: (1) using every possible
pairwise between interactions (full pairwise interaction model, used by e.g. [51]); (2)
using only user–item, user–context and item–context interactions. However neither of
these generalizations are used by iTALSx, as it works with three dimensions, but these
models are discussed later with GFF in Chapter 6.

The model is given by the following expression (and see Figure 4.2):

r̂u,i,c = 1T
(
M (U)
u ◦M (I)

i +M (U)
u ◦M (C)

c +M
(I)
i ◦M

(C)
c

)
+ b(U)

u + b
(I)
i + b(C)

c (4.12)

Similarly to iTALS, the biases (b
(U)
u , b

(I)
i and b

(C)
c ) can be incorporated into the

feature vectors and thus I will use the model without biases throughout the rest of the
section:

r̂u,i,c = 1T
(
M (U)
u ◦M (I)

i +M (U)
u ◦M (C)

c +M
(I)
i ◦M

(C)
c

)
(4.13)
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Figure 4.2: Concept of the pairwise model of iTALSx with three dimensions (user, item,
context).

Note that the preference is predicted as the composite of a user–item interaction, a
context dependent user bias and a context dependent item bias. The context dependent
user bias (i.e. user–context interaction) does not take part in the ranking, because
recommendations are generated for a given user under a given context-state, thus its
value is the same for all items. However it can reduce the effect of context related shifts
in the training data, which would be considered noise by a simple matrix factorization.

4.3.1 Derivation of iTALSx

The iTALSx algorithm follows the same scheme as iTALS, but the derivation differs due
to using a different preference model. The model in (4.13) is symmetrical, therefore the
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computations for getting each feature matrix are similar. Thus only the computation of
the user feature matrix M (I) is shown here.

The loss from equation (4.3) is convex in the non-fixed parameters (i.e. M (I)),
therefore it reaches its minimum in M (I) where its partial derivative with respect to
M (I) is zero. The partial derivative of L in M (I) is separable by the columns of the
feature matrix, thus each feature vector can be computed separately. Without the loss

of generality, I show the steps for computing the first feature vector (M
(I)
1 )) of the

feature matrix. The steps for other feature vectors are the same.

The partial derivative of L with respect to M
(I)
1 (by substituting the model in the

same step):

∂L

∂Ii
=− 2

SU ,SC∑
u=1,c=1

W(u, 1, c)ru,i,c

(
M (U)
u +M (C)

c

)
︸ ︷︷ ︸

O

+

+ 2

SU ,SC∑
u=1,c=1

W(u, 1, c)
(
M (U)
u +M (C)

c

)(
M (U)
u +M (C)

c

)T
︸ ︷︷ ︸

I1

M
(I)
1 +

+ 2

SU ,SC∑
u=1,c=1

W(u, 1, c)(M (C)
c )TM (U)

u

(
M (U)
u +M (C)

c

)
︸ ︷︷ ︸

I2

+

+ 2λI,1M
(I)
1

(4.14)

The computation of O is efficient since most of the members in the sum are zeroes,
because most of the preference values are zeroes. The computation of I1 is expensive,
however the same transformation can be used as with iTALS by using W(u, i, c) =
w0 + w′(u, i, c):

I1 =w0

SU ,SC∑
u=1,c=1

(
M (U)
u +M (C)

c

)(
M (U)
u +M (C)

c

)T
︸ ︷︷ ︸

J

+

+

SU ,SC∑
u=1,c=1

w′(u, 1, c)
(
M (U)
u +M (C)

c

)(
M (U)
u +M (C)

c

)T
︸ ︷︷ ︸

J ′

(4.15)

J ′ can be efficiently computed, as most members of this sum are zeroes, because
w′(u, 1, c) =W(u, 1, c)−w0 is zero if there is no event for the given entity combination.
J ′ depends on which feature vector is being computed, J is the same for all columns
of M (I) and thus can be precomputed before computing M (I). J can be written in the
following form:
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J =w0

SU∑
u=1

M (U)
u

(
M (U)
u

)T
︸ ︷︷ ︸

C(U)

+w0

SC∑
c=1

M (C)
c

(
M (C)
c

)T
︸ ︷︷ ︸

C(C)

+

+ w0

SU∑
u=1

M (U)
u︸ ︷︷ ︸

O(U)

(
SC∑
c=1

M (C)
c

)T
︸ ︷︷ ︸

(O(C))
T

+w0

SC∑
c=1

M (C)
c︸ ︷︷ ︸

O(C)

(
SU∑
u=1

M (U)
u

)T
︸ ︷︷ ︸

(O(U))
T

(4.16)

The naive computation of I2 is also expensive, but the same transformation can be
applied as for I1:

I2 =w0

SU ,SC∑
u=1,c=1

(M (C)
c )TM (U)

u

(
M (U)
u +M (C)

c

)
︸ ︷︷ ︸

I

+

+

SU ,SC∑
u=1,c=1

w′(u, 1, c)(M (C)
c )TM (U)

u

(
M (U)
u +M (C)

c

)
︸ ︷︷ ︸

I′

(4.17)

I ′ can be efficiently computed similarly to J ′ and I can be written in the following
form:

I =w0

SU∑
u=1

M (U)
u

(
M (U)
u

)T
︸ ︷︷ ︸

C(U)

SC∑
c=1

M (C)
c︸ ︷︷ ︸

O(C)

+

+ w0

SC∑
c=1

M (C)
c

(
M (C)
c

)T
︸ ︷︷ ︸

C(C)

SU∑
u=1

M (U)
u︸ ︷︷ ︸

O(U)

(4.18)

Thus, both J and I can be computed from the autocorrelation matrices (C(U) and
C(C)) and the sum of feature vectors (O(U) and O(C)) of the other two feature matrices.
These statistics can be efficiently computed and the assembly from J and I is also
efficient (see Section 4.3.2).

After efficiently computing I1 = J +J ′, I2 = I+I ′ and O, ∂L

∂M
(I)
1

= 0 can be solved

for M
(I)
1 as follows:

M
(I)
1 = (I1 + λI,1I)−1 (O − I2) (4.19)

The pseudocode of iTALSx is given in Algorithm 4.3.1. The pseudocode follows
the deduction above. Autocorrelation matrices and sum of feature vectors are initially
computed in lines 3 and 4. The column independent parts J and I are created in lines
10 and 11. The column dependent parts are added in lines 15–24 and the desired column
computed in line 27. This step also adds regularization to avoid numerical instability
and overfitting of the model. After each column of M (i) is computed, the corresponding
autocorrelation matrix C(i) and sum of features O(i) are also recomputed (lines 29–30).
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Algorithm 4.3.1 Pseudocode of the iTALSx algorithm

Input: R: a 3 dimensional SU × SI × SC sized tensor of zeroes and ones;
W: a weight function as defined in equation (4.2);
K: the number of features; E: number of epochs;
{λx}x∈{U,I,C}: regularization coefficients per dimension;

Output: {M (x)}x∈{U,I,C}: K × Sx sized low rank matrices;
procedure iTALSx(R, W , K, E, {λx})

1: for x ∈ {U, I, C} do
2: M (x) ← Random K × Sx sized matrix
3: C(x) ←M (x)(M (x))T

4: O(x) ←
∑Sx

ix=1M
(x)
ix

5: end for
6: for e = 1, . . . , E do
7: for x ∈ {U, I, C} do
8: y ∈ {U, I, C}, y 6= x //a dimension (not the currently computed one)
9: z ∈ {U, I, C}, z 6= x and z 6= y //the third dimension

10: J ← w0

(
C(y) + C(z) +O(y)

(
O(z)

)T
+O(z)

(
O(y)

)T)
11: I ← w0

(
C(y)O(z) + C(z)O(y)

)
12: for j = 1, . . . , Sx do
13: O,J ′, I ′ ← 0
14: n← 0
15: for all {r | events of the jth entity in the x dimension} do
16: (u, i, c)← indices of r
17: jy, jz ← indices of r in the y and z dimensions
18: w ←W(u, i, c)− w0

19: v ←M
(y)
jy

+M
(z)
jz

20: J ′ ← J ′ + wvvT

21: I ′ ← I ′ + w
(
M

(y)
jy

)T
M

(z)
jz
v

22: O ← O + (w + w0)v
23: n← n+ 1
24: end for
25: I1 ← J + J ′
26: I2 ← I + I ′
27: M

(x)
j ← (I1 + λxnI)−1(O − I2)

28: end for
29: C(x) ←M (x)(M (x))T

30: O(x) ←
∑Sx

ix=1M
(x)
ix

31: end for
32: end for
33: return {M (x)}x∈{U,I,C}
end procedure
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4.3.2 Complexity

The complexity of one epoch is O
(
N+K2 + (SU + SI + SC)K3

)
(see Table 4.3 for break-

down). iTALSx scales linearly with the number of transactions in the training set. Due
to the large number of transactions and the growth rate of the set of transactions, this
property is very beneficial in practice. The algorithm scales cubically with the number
of features in theory. However N+ � (SU +SI+SC) and K is small in practice, thus the
first term dominates. Therefore the algorithm scales quadratically with K in practice
(see Section 4.4.2 for empirical results on running times).

Table 4.3: Complexity of computations for iTALSx

Task Complexity Comments

Computations required per column (e.g.: M
(I)
1 )

Computation of O,
J ′ and I ′

O(N
(I)+
1 K2) N (I)+ is the number of training events, in

which the first entity of the item dimension is
present (i.e. support of this entity). Due to the
definitions of R andW, each of these sums will
have N (I)+ non-zero members. The computa-
tion of the update vector in line 19 takes O(K)
time, while the updates themselves (lines 20–
22) take O(K2), O(K2) amd O(K) times for
J ′, I ′ and O respectively.

Solving for M
(I)
1 O(K3) This requires to solve a K ×K sized system of

linear equations (line 27).

Total complexity of the above for all columns of M (I):
O(N+K2 + SIK

3), (N+ is the number of transactions)

Computations once per computing a feature matrix (e.g.: M (I))

Computing J and
I

O(K2) Assembled from C(U) and C(C) autocorrelation
matrices and O(U) and O(C) sums of feature
vectors (lines 10–11).

Recomputing C(I)

and O(I)
O(SIK

2) Autocorrelation matrices and sums of feature
vectors need to be recomputed after finish-
ing the recomputation of the feature matrix
(lines 29–30).

Total complexity of an epoch: O
(
N+K2 + (SU + SI + SC)K3

)

4.3.3 Results

iTALSx is compared to iALS and iCA. Only one context dimension was used at a time
for iTALSx.

Table 4.4 shows the recommendation accuracy of iALS, iCA and iTALSx w.r.t.
recall@20 on five datasets using 20, 40 and 80 features. iTALS with seasonality and
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Table 4.4: Recommendation accuracy of the iTALSx algorithm, compared to iALS and
a context-aware baseline

Dataset K iALS iCA (S) iTALSx (S) iTALSx (Q)

Grocery
20 0.0649 0.0764 (+17.74%) 0.1027 (+58.35%) 0.1182 (+82.29%)
40 0.0714 0.0841 (+17.85%) 0.1164 (+63.07%) 0.1299 (+81.92%)
80 0.0861 0.1072 (+24.43%) 0.1406 (+63.23%) 0.1431 (+66.14%)

TV1
20 0.1189 0.0965 (-18.88%) 0.1248 (+4.92%) 0.1524 (+28.18%)
40 0.1111 0.0935 (-15.81%) 0.1127 (+1.46%) 0.1417 (+27.53%)
80 0.0926 0.0825 (-10.97%) 0.0942 (+1.67%) 0.1295 (+39.77%)

TV2
20 0.2162 0.1747 (-19.20%) 0.2220 (+2.69%) 0.2393 (+10.68%)
40 0.2161 0.1672 (-22.60%) 0.2312 (+6.98%) 0.2866 (+32.61%)
80 0.2145 0.1615 (-24.73%) 0.2223 (+3.62%) 0.3006 (+40.12%)

LastFM
20 0.0448 0.0523 (+16.94%) 0.0503 (+12.33%) 0.1675 (+274.35%)
40 0.0623 0.0796 (+27.84%) 0.0599 (-3.85%) 0.1869 (+200.18%)
80 0.0922 0.1168 (+26.66%) 0.0928 (+0.67%) 0.1984 (+115.18%)

VoD
20 0.0633 0.0703 (+10.98%) 0.0790 (+24.69%) 0.0821 (+29.67%)
40 0.0758 0.0816 (+7.74%) 0.0916 (+20.87%) 0.1068 (+40.93%)
80 0.0884 0.0884 (+0.04%) 0.0990 (+11.99%) 0.1342 (+51.88%)

sequentiality is depicted as iTALSx (S) and iTALSx (Q) respectively. The improvement
over iALS is written in brackets.

The accuracy of iTALSx is almost always significantly higher than that of iALS (29
of 30) or iCA (12 of 15). iTALSx performs the worst (relative to iALS and iCA) on
the LastFM dataset with seasonality. LastFM is a more complex dataset with relatively
higher density (compared to e.g. TV2). iTALSx models the preference as the sum of
two dimensional projections of a three dimensional problem. This can not capture the
whole picture well and thus falls behind on more complex data.

Sequentiality proved to be more useful in increasing the accuracy than seasonality
with iTALSx as well.

4.4 Comparison of iTALS and iTALSx

iTALS and iTALSx behaved differently on the five test datasets. In this section I com-
pare iTALS and iTALSx. The full N-way model of iTALS approximates the elements in
R with the sum of the elements in the Hadamard products of three vectors, while the
pairwise model of iTALSx uses the sum of pairwise dot products. Mathematically the
model of iTALS contains the iTALSx model as:

T̂ iTALS
u,i,c =1T (Uu ◦ Ii ◦ Cc)

3 · T̂ iTALS
u,i,c =1T (Uu ◦ Ii ◦ Cc) + 1T (Uu ◦ Ii ◦ Cc) + 1T (Uu ◦ Ii ◦ Cc)

T̂ iTALSx
u,i,c =1T (Ii ◦ Cc) + 1T (Uu ◦ Cc) + 1T (Uu ◦ Ii)
T̂ iTALSx
u,i,c =1T (1 ◦ Ii ◦ Cc) + 1T (Uu ◦ 1 ◦ Cc) + 1T (Uu ◦ Ii ◦ 1) ,

(4.20)
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where ◦ denotes the Hadamard product of the argument vectors.

It is more interesting to compare the models from the recommendation aspect. The
main goal of a collaborative filtering algorithm is to learn the user–item relations (e.g.
which user likes which item). iTALS adds context to the model and approximates the
user–item relation in the 3 dimensional space. It reweights the user–item relations by a
context-state dependent vector, which becomes more accurate with more factors. On the
other hand, iTALSx uses a composite model and approximates the user–item relation
by the sum of approximations in user–item, user–context and item–context sub-spaces,
where the feature vectors in the sub-spaces are constrained by requiring a single feature
vector for each entity. Consequently, the descriptive power of iTALS is larger, which can
be however only leveraged at a sufficiently fine resolution of the feature space, requiring
many factors. At low factor models, the boundaries of different characteristics is blurred
by reweighting and the model becomes less precise. In such cases, iTALSx is expected
to be more accurate, since the sub-space models can be learned easier.

4.4.1 Accuracy comparison

The significantly better between iTALS and iTALSx in the same setting (i.e.: same con-
text, number of features, dataset) is highlighted by a light gray background in Table 4.5.
Generally, iTALSx performs better if the number of features is lower. Also, there seems
to be a loose connection between the density of the dataset and the relative accuracy
of the two models. With a given context, iTALSx performs better if the density of the
dataset is lower. High sparsity (lower density) is a common property of real life datasets,
therefore iTALSx is beneficial for practical applications.
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Figure 4.3: Recall@20 values for iTALS and iTALSx with seasonality (-S) and sequen-
tiality (-Q) with the number of features ranging from 40 to 720 on the LastFM dataset.

Figure 4.3 compares iTALS and iTALSx using high number of features on the
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Table 4.5: Recall@20 values for iTALS, iTALSx. Measurements with seasonality and
sequentiality are denoted with the (S) and (Q) postfix respectively. The significantly
better between iTALS and iTALSx in the same setting is highlighted by a light gray
background

Dataset K iTALS (S) iTALSx (S) iTALS (Q) iTALSx (Q)

Grocery
20 0.0990 0.1027 0.1220 0.1182
40 0.1071 0.1164 0.1339 0.1299
80 0.1146 0.1406 0.1439 0.1431

TV11
20 0.1167 0.1248 0.1417 0.1524
40 0.1235 0.1127 0.1515 0.1417
80 0.1167 0.0942 0.1553 0.1295

TV2
20 0.1734 0.2220 0.2322 0.2393
40 0.2001 0.2312 0.3103 0.2866
80 0.2123 0.2223 0.2957 0.3006

LastFM
20 0.0674 0.0503 0.1556 0.1675
40 0.0888 0.0599 0.1657 0.1869
80 0.1290 0.0928 0.1864 0.1984

VoD
20 0.0778 0.0790 0.1039 0.0821
40 0.0909 0.0916 0.1380 0.1068
80 0.0996 0.0990 0.1723 0.1342

LastFM dataset. With seasonality, iTALS is already better than iTALSx, even with
40 features. The recommendation accuracy of iTALS improves faster as the number of
features increases. With sequentiality, iTALSx starts off with significantly better accu-
racy, but as the number of features increase, the difference becomes less significant and
it disappears at high factor models. The speed of accuracy improvement is better for
iTALS in both cases.

iTALSx performs better than iTALS on the sparser datasets. I used the VoD dataset
(with seasonality) to further investigate the connection between sparsity and accuracy.
I chose this dataset, because both methods perform similarly on it. Figure 4.4 plots
recommendation accuracy (recall@20) on gradually thinned version of the dataset. At
each point a certain portion of the events was randomly removed, however it was ensured
that the number of active users and items do not change, thus the size of the user–item
matrix is fixed. In each step the number of events is decreased by 10% of the original
number until only 10% remains. I also checked the results on 5% data and on the minimal
number of events where the number of active users and items remain unchanged. Note
that there is a minor repetition in the VoD data and this thinning procedure also reduces
repetitiveness. I checked it separately and the effect of changing the repetition in and of
itself is negligible, thus changes can be attributed solely to the change in data density.
I used three different number of features (5, 20 and 80).

WithK = 80, accuracy slowly decreases for both methods as density decreases. Then
at a certain point iTALS starts to lose accuracy faster and consistently underperforms
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Figure 4.4: Recommendation accuracy of iTALS and iTALSx versus data sparsity. Ex-
periments were executed on the VoD dataset by gradually removing random subsets of
the events to make it sparser.

iTALSx. When the dataset is very sparse, the rate of decreasing of the accuracy becomes
faster for both methods, but the effect on iTALS is larger. The lines meet once again
where the minimal number of events was used to train the algorithms. It is to be
expected, because the number of events per user and item is close to 1 at this point
that makes collaborative filtering unviable in general. Generally, one can conclude that
iTALSx performs better on sparser datasets than iTALS. The methods behave similarly
with K = 20 and K = 5, however an additional interesting observations can be made.

With K = 20 the accuracy of iTALSx slightly increases in the first half of the graph;
with K = 5 this is true for both methods. As data becomes more and more sparse
it becomes noisier, but it also becomes less complex. The less complex the data is,
the easier it is to model the user–item relations in general. This does not mean that
individual users (especially those whose events were removed) can also be modelled
better, but the system of events as a whole is easier to represent in the latent feature
space. The representational capability of the factorization is determined by the number
of features and the model. The N-way model has larger capacity as it models the entirety
of the 3-way interaction; and larger number of features also means larger representational
capacity. The graphs increase, when the original representational capacity is not enough
to model the more complex system (i.e. more dense data). But this can not continue
forever as the noisiness also increases as data becomes sparser and thus the accuracy
will eventually start to decrease.

To summarize, the blurring effect of the low feature models makes learning diffi-
cult for iTALS, especially if the dataset is sparse. Sparser datasets are generally more
noisy, and the elementwise model is more sensitive to noise by nature, because of the
reweighting of the user–item relation in that model. My assumption about the learning
capabilities of the algorithms and their connection to the finer representation of entities
are underpinned as iTALS can outperform iTALSx when the number of features is suf-
ficiently large or if the dataset is more dense. These results imply that one should use
iTALSx when the dataset is sparse and we can not afford high feature models (that is
most common in practical applications).
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4.4.2 Complexity and training times

The complexity is O(N+K2 + (SU + SI + SC)K3) for both iTALS and iTALSx for
three dimensions. Since in practice N+ � (SU + SI + SC), each method scales with
K2 when low-factor models are used. However the training time of iTALSx is slightly
higher, because (a) iTALS does not require O(X) (i.e. the sum of the feature vectors of
the feature matrix of the X dimension) for its computations; (b) the computations in
iTALSx require a few extra operations (see Figure 4.5).
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Figure 4.5: The time of one epoch (computing each feature matrix once) with iTALS
and iTALSx using different number of features. (Measurements on the VoD data set;
only one core used.) Results for iALS are also depicted.

Figure 4.5 also contains the training times for non-context-aware (2D) iALS algo-
rithm, that uses a similar method for learning. The complexity of iALS is O(N+K2 +
(SU +SI)K

3). This means that the running times of iALS and the context-aware meth-
ods differ only in a constant multiplier, that is proportional to the number of matrices
to be recomputed, but the time to compute one feature matrix is virtually the same for
these algorithms.
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4.5 Summary

In Chapter 4 I proposed context-aware factorization algorithms for implicit data and
tested them on five datasets with two context dimensions.

In Section 4.2 I proposed the iTALS algorithm to solve the implicit feedback based
context-aware recommendation task. The method and the results described in this
section were published in [24] and the following theses are based on them.

Thesis 2.1 I developed iTALS, a tensor factorization method that uses pointwise
ranking via optimizing for weighted sum of squared errors. It estimates preferences
using the N-way interaction model, i.e. the sum of elements in the elementwise
product of feature vectors from each dimension. I showed that iTALS can be applied
to solve the implicit feedback based context-aware recommendation problem by using
ones and zeroes for positive and missing feedback respectively with higher weights
for positive feedback.

Thesis 2.2 I showed that iTALS significantly outperforms the non context-aware
implicit matrix factorization and the prefiltering based context-aware baseline with
respect to recommendation accuracy, measured by recall.

Thesis 2.3 I demonstrated that iTALS can be trained efficiently on the implicit
feedback based context-aware recommendation problem, using alternating least squares.
I showed that iTALS can be efficiently used in practice as it scales linearly with
the number of events and quadratically with the number of features in the range of
practically useful number of feature values.

In Section 4.3 I proposed the iTALSx algorithm to solve the implicit feedback based
context-aware recommendation task. The method and the results described in this
section were published in [22, 23] and the following theses are based on them.

Thesis 3.1 I developed iTALSx, a tensor factorization method that uses pointwise
ranking via optimizing for weighted sum of squared errors. It estimates preferences
using the pairwise interaction model, i.e. the sum of dot products between feature
vectors from each pair of dimensions. I showed that iTALSx can be applied to
solve the implicit feedback based context-aware recommendation problem by using
ones and zeroes for positive and missing feedback respectively with higher weights
for positive feedback.

Thesis 3.2 I showed that iTALSx significantly outperforms the non context-aware
implicit matrix factorization and the prefiltering based context-aware baseline with
respect to recommendation accuracy, measured by recall.

Thesis 3.3 I demonstrated that iTALSx can be trained efficiently on the implicit
feedback based context-aware recommendation problem, using alternating least squares.
I showed that iTALSx can be efficiently used in practice as it scales linearly with
the number of events and quadratically with the number of features in the range of
practically useful number of feature values.

In Section 4.4 I experimented with the iTALS and iTALSx algorithms, compared
them and identified easily accessible contexts. The results described in this section were
published in [22–24] and the following theses are based on them.
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Thesis 4.1 I proposed to use sequentiality as context for recommendations. Se-
quentiality is the item with which the user previously interacted, before the current
one. I argued that this context information is available with every dataset where
transactions can be ordered based on their time of occurrence, which is common in
practice. I showed that using this information can significantly increase recommen-
dation accuracy to using no context and even to using seasonality as the context
in a wide variety of settings (dataset, algorithms, models, number of features).

Thesis 4.2 I compared the strengths and weaknesses of iTALS (N-way model) and
iTALSx (pairwise model). I found that the N-way model is more suitable when the
number of features is high and/or if the dataset is denser; and the pairwise model
is better otherwise.



Chapter 5

Speeding up ALS for
context-aware factorization

In this chapter I propose ways to speed-up ALS based context-aware factorization meth-
ods such as iTALS and iTALSx [25].

5.1 Improving training times for practical usefulness

The training time of the algorithms is key aspect for practical applicability. Faster
training allows to (1) capture a more recent state of the system modeled (advantageous
for any system, but required for ones where the lifetime of the items is short or new
items appear constantly); (2) retrain the models more frequently; (3) apply trade-off
between running times and accuracy by using more features or running more epochs.

A straightforward way of speeding up training – without any modification on the base
algorithm – is to distribute computations between multiple processing units (e.g. pro-
cessor cores, machines). A considerable advantage of most ALS based methods is that
the majority of computations are independent and therefore can be done simultaneously.
With iTALS/iTALSx, the feature vectors of a dimension are computed independently,
therefore the degree of parallelization can be as high as the number of entities (users,
items, context-states). Since the computation for one entity is fast, the method scales
well. However, ALS-based methods (including iTALS) require that at least the model
(feature matrices) are stored in memory and each processing unit has access to this
shared memory.1 Otherwise a huge communication overhead arises, since the computa-
tions require random access to the feature matrices. This also implies that ALS does not
work well with standard map-reduce based big data technologies [6], but requires a dif-
ferent solution (e.g.: multicore/multiprocessor machine, GPGPU, multi-GPU systems,
cluster with shared memory, etc.).

Models and data fit in memory in most cases. With the indexing overhead required
by iTALS, ∼ 45 M 3-tuple records can be stored in 1 GB. The models take even less
space: low and high factor models (K = 40 and K = 200) would require 22.13 MB and
110.63 MB,2 respectively. Today’s normal PCs therefore can handle around 1 billion

1It is beneficial if the data is stored in the shared memory as well, but it can be stored on disk as
well, if properly indexed.

2Here we assumed a relatively high density of ∼ 1%, 100K for users and 45K for items that is realistic

59
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records, their high end counterparts can deal with several billions and shared memory
clusters are capable of working with tens or even hundreds of billion events. Thus this
approach is feasible for most of the recommendation tasks.

On the other hand, there is room for improvement beyond distributing the compu-
tations. Distributed computation does not decrease the total load on the infrastructure
and the training might still take long due to some computationally expensive steps in
the algorithm. Usually the CPU is the bottleneck for such algorithms, in contrast to
the classic big data problem. ALS slows down significantly if the number of features
(K) is high. This prevents the efficient usage of high factor models. High factor models
are generally more accurate than low factor ones therefore it would be beneficial to use
them.

In this chapter, I propose two approximate methods that significantly speed up ALS-
learning, especially if the number of features is high, that is, the gain in speed increases
as the number of features increases.

The proposed methods allow for a better trade-off between speed and recommen-
dation accuracy. One can either train a model with the same accuracy in significantly
less time, train a model with more features (and thus be more accurate) with the same
training time, or anything in-between. This solution does not address the incompatibil-
ity between ALS and map-reduce based big data technology, we instead offer feasible
trade-off solutions using approximate methods to reduce the computational complexity
of ALS-learning.

Recall that except for the matrix inversion, ALS based algorithms scale quadratically
with K. For iTALS, the DN+K2 term dominates the K3

∑D
i=1 Si term in the complex-

ity when we use low-factor models, when DN+ �
∑D

i=1 Si. The computation of the
cubical term can still take a long time, especially with higher K values or more context
dimensions. Therefore, I propose two approximate solutions instead of the naive ALS to
further reduce the time complexity of the learning process of algorithms like iTALS and
iTALSx. ALS-CD applies coordinate descent learning, while ALS-CG adapts the conju-
gate gradient descent method. Both methods were integrated into iTALS and iTALSx
(and GFF from Chapter 6). The adaptations are generalizations of the techniques pro-
posed for matrix factorization in [50] and [67]. This generalization is not exclusive to
the aforementioned algorithms, other ALS based factorization algorithms can benefit
from the direct application of these methods. The approximate methods are presented
with iTALS, using it as an example. They can be easily applied to other methods using
similar steps.

I will show that the approximate variants provide a trade-off: they can achieve lower
running times (see Section 5.5.2) in exchange for somewhat higher loss function values.
Note that higher loss function values are not necessarily translated to lower accuracy
in recommendations when one applies other, non-error based metrics (classification or
ranking metrics) for the evaluation (see Section 5.5.1).

5.2 Coordinate descent

The coordinate descent (CD) approach approximates the feature vector by computing
its coordinates separately. CD approximates the least squares solution of a b = Ax linear

for ∼ 45 M record.
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system (seeking x). By fixing all but one feature and computing the remaining ones,
the matrix inversion can be avoided (it is reduced to a division), thus the computation
time can be greatly reduced (see Algorithm 5.2.1). The complexity of this algorithm is
O (NIK(K +NE)), where NE is the number of rows (examples) of A. Note that while
the solution provided by CD can be good enough, it does not converge to the least
squares solution.

Algorithm 5.2.1 Weighted coordinate descent method

Input: A: NE ×K matrix of input examples; b: output for the examples; x(0): initial
solution; w: vector of weights; λ: regularization coefficient; NI : number of iterations
Output: x: approximate solution of Ax = b
procedure Solve-weighted-CD(A, b, x0, w, λ, NI)

1: x← x(0)

2: b̂←
∑K

j=1Ajxj
3: for c = 1, . . . , NI do
4: for k = 1, . . . ,K do
5: b̂← b̂−Akxk
6: xk ←

∑NE
i=1 wiAi,k(bi−b̂i)∑NE

i=1 wiA2
i,k+λ

7: b̂← b̂+Akxk
8: end for
9: end for

10: return x

end procedure

The CD approximation of ALS uses Algorithm 5.2.1 to compute each feature vector
instead of solving the system of linear equations directly. The biggest difficulty to adapt
CD to iTALS/iTALSx (or to any other complex models) is posed by the extremely high
number of examples (NE), which corresponds to the number of rows of A. This quantity
is the product of the sizes of all but one dimension, which is NE =

∏D
j=1,j 6=i Sj , when a

feature vector of the ith dimension is sought.

Positive examples can be decomposed into the sum of a negative (weight: w0; pref-
erence: p0 = 0) and a modified positive example (weight: w′(·) = w(·)−w0; preference:
p1 = 1). Thus line 6 can be reformulated as follows:

xk →
w0
∑NE

i=1Ai,k(p0 − b̂i) +
∑

i∈pos.ex.w
′
iAi,k(p1 − b̂i) + w0

∑
i∈pos.ex. (p1 − p0)Ai,k

λ+ w0
∑NE

i=1A
2
i,k +

∑
i∈pos.ex.w

′
iA

2
i,k

(5.1)

Summing over the positive examples is fast, because their number is small. Even
though the negative examples are shared between all features of all feature vectors of
a given dimension, their number is too high for the efficient usage of the coordinate
descent method. However the negative examples are not directly needed. They are used
to compute the following statistics that are used to calculate xk

3:

3b̂i =
∑K

j=1,j 6=k Ai,jxj was substituted into the first sum of (5.1); Ai,kAi,jxj (j 6= k) is used in the
nominator and Ai,kAi,k is used in the denominator.
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Compression step:

��

�

�

Negative examples:

e.g. elementwise products of 

feature vector pairs for iTALS

(e.g.: all item-context pairs)

p0: Output for negative

examples (0 by default)

Covariance of negative examples,

can be computed efficiently

Covariance with the output,

can be computed efficiently,

0 with the default setting
S2S3p0 (0 by default)
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Cholesky

decomposition

�� � �′

Figure 5.1: Concept of the compression of negative examples in the 3 dimensional user–
item–context setting.

(a) diag(x1, . . . , xk−1, 1, xk+1, . . . , xK)ATAk = DkATAk

(b) p0

NE∑
i=1

Ak
(5.2)

(a) is the kth column of J weighted by diagonal matrix that contains the values of
the actually computed feature vector where the currently computed feature set to 1. J
can be computed efficiently using (4.10) and (4.16) for iTALS and iTALSx respectively.
(b) is zero with the standard setting of preferences4. Using the precomputed J speeds
up line 6 but the updating of the predicted output in lines 5 and 7 still iterates over
all of the negative examples. Therefore I compress the negative examples into K + 1
virtual examples using the following steps (also see figure 5.1):

• A vector of zeros (covariance with the output) is appended to J from the right
and from the bottom. Thus we get a (K + 1) × (K + 1) sized matrix: Ĵ . The
(K+1,K+1) element of Ĵ is set to p0

∏D
j=1,j 6=i Sj , where p0 is the value associated

with the negative preference (p0 = 0 by default). Ĵ is symmetric and positive
definite. This step is needed because the input and the output must be compressed
simultaneously. (This step is the same as appending the desired output of the
negative preference to the examples (i.e. a vector of p0 values to A) and then
computing the covariance of this matrix.)

4Even if the negative preference is considered to be not zero, this can also be precomputed in an
efficient way.



5.3. CONJUGATE GRADIENT 63

• Ĵ is decomposed into (L′)T L′ using Cholesky decomposition. L′ is an upper tri-
angular matrix. The decomposition requires O(K3) time, but has to be computed
only once per recomputing a feature matrix, because Ĵ is shared across all feature
vectors of a dimension.

• The rows of L′ are the compressed negative examples. The first K coordinates
of a row are the coefficients of the compressed example and the last coordinate
is the desired output for those coefficients. Due to the nature of the transfor-
mation diag(x1, . . . , xk−1, 1, xk+1, . . . , xK, 1) (L′)T L′k = (DkATAk|p0

∑NE
i=1 Ak), i.e.

(a) with (b) appended to it from (5.2). Using the compressed examples the com-
putation of (5.2) and also the updates of lines 5 and 7 can be done efficiently.

The examples of the negative feedback were compressed into K+1 virtual examples,
that is shared for every feature vector of the ith matrix. For the jth feature vector the
positive feedback on the jth entity is also needed. The number of positive examples
equals to the number of events with on the given entity. Therefore the number of

examples for an entity is K + 1 + N
(i)+
j , which is low, thus the coordinate descent

method can be computed efficiently.

Algorithm 5.2.2 shows the pseudocode for iTALS-CD. It is identical with algo-
rithm 4.2.1 until line 7. In lines 8–14 the negative examples are compressed. This
starts by appending a column and a row of zeros to J . Note that zeros are used because
the preference value associated to the missing negative feedback is zero. A weight vector
is also needed because the algorithm optimizes for wRMSE (line 19). Updating steps
of this matrix and vectors with positive examples are executed in lines 20–27. The so-

lution for M
(i)
j is computed in line 28 using a weighted coordinate descent method (see

Algorithm 5.2.1). The signature of the solver is Solve-weighted-CD(A, b, x0, w, λ,
NI), where the linear system is ATx = b, x0 is an initial solution, the error is weighted
by weight vector w as (

∣∣∣∣w ◦ (b−ATx)∣∣∣∣), λ is the regularization parameter and NI is
the number of iterations.

5.2.1 Complexity

The complexity of one epoch (i.e. computing each matrix once) isO(NDK
3+NDN

+NIK+∑ND
i=1 SiK

2) (see Table 5.1 for breakdown).

Comparing this to the complexity of iTALS (O(NDN
+K2 + K3

∑ND
i=1 Si)), we can

observe that iTALS-CD also scales cubically in K, however, the coefficient is reduced
from

∑D
i=1 Si to ND. The other two terms are similar, however there is NIK

2 and NIK
in the place of K3 and K2. In practice, when NI � K and ND is low, for practical K
values it scales linearly in K because NDN

+ �
∑ND

i=1 Si.

5.3 Conjugate gradient

The conjugate gradient (CG) [21] method is the state-of-the-art iterative method for
solving Ax = b type systems of linear equations, where A is symmetric positive definite
(see Algorithm 5.3.1). The geometric interpretation of CG is that first a direction
is selected in which the error can be reduced the most. In the following iterations the
algorithm selects the best direction that is pairwise conjugate to every previous direction.
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Algorithm 5.2.2 iTALS using coordinate descent for speedup

Input: R: a ND dimensional S1 × · · · × SND
sized tensor of zeroes and ones;

W: a weight function as defined in equation (4.2);
K: the number of features; E: number of epochs;
{λd}d=1,...,ND

: regularization coefficients per dimension;
NI : number of inner iterations for CD;

Output: {M (i)}i=1,...,ND
: K × Si sized low rank matrices;

procedure iTALS-CD(T , W , K, E, λ, NI)

1: for i = 1, . . . , ND do
2: M (i) ← Random K × Si sized matrix
3: C(i) ←M (i)(M (i))T

4: end for
5: for e = 1, . . . , E do
6: for i = 1, . . . , ND do
7: J ← w0 · C(1) ◦ · · · ◦ C(i−1) ◦ C(i+1) · · · ◦ C(ND)

8: Ĵ ∈ RK+1×K+1

9: Ĵ1:K,1:K ← J
10: Ĵ1:K+1,K+1 ← 0

11: ĴK+1,1:K+1 ← 0

12: (L′)T L′ ← Cholesky-decomposition(Ĵ )
13: L← strip the last column of L′

14: b← the last column of L′ transposed
15: for j = 1, . . . , Si do
16: n← 0
17: L(j) ← L
18: b(j) ← b
19: w(j) ← vector of w0 values; same length as b(j)

20: for all {r | r = rj1,...,ji−1,j,ji+1,...,jND
, r 6= 0} do

21: w ←W(j1, . . . , ji−1, j, ji+1, . . . , jD)− w0

22: v ←M
(1)
j1
◦ · · · ◦M (i−1)

j1−1
◦M (i+1)

ji+1
◦ · · · ◦M (D)

jD

23: L(j) ← append vT to L(j) from below
24: b(j) ← append 1 to b(j)

25: w(j) ← append w to w(j)

26: n← n+ 1
27: end for
28: M

(i)
j ← Solve-weighted-CD(L(j), b(j), M

(i)
j , w(j), λd · n, NI)

29: end for
30: C(i) ←M (i)(M (i))T

31: end for
32: end for
33: return {M (i)}i=1,...,ND

end procedure

iTALS-CG approximates the feature vectors by replacing M
(i)
j = (I + λinI)−1O in

line 20 of algorithm 4.2.1 with solveCG(A, b, x0,M) with A = I+λinI, b = O, x0 with
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Table 5.1: Complexity of computations for iTALS using ALS-CD

Task Complexity Comments

Computations required per column (e.g.: M
(1)
1 )

Extending L, b
and w

O(KN
(1)+
1 ) N

(1)+
1 is the number of training

events, in which the first entity of
the first dimension is present (i.e.
support of this entity). For each
event vector v is computed and v
is appended to L. b and w are ex-
tended with a scalar value.

Solving for M
(1)
1

with CD
O
(

(K2 +N
(1)+
1 K)NI

)
The complexity of algorithm 5.2.1
is O(NENIK) where NE ins the
number of examples. Here NE =

K + N
(1)+
1 as we have N

(1)+
1 posi-

tive examples and the negative ones
are compressed to K size.

Total complexity of the above for all columns of M (1):
O(N+KNI + S1K

2), (N+ is the number of transactions)

Computations once per computing a feature matrix (e.g.: M (1))

Computing J O(NDK
2) Assembled from C(i) autocorrela-

tion matrices, using all but the
one corresponding to the currently
computed feature matrix.

Cholesky decom-
position of Ĵ

O(K3) Required once per feature matrix

Recomputing
C(1)

O(S1K
2) Autocorrelation matrices need to

be recomputed after finishing the
recomputation of the feature ma-
trix.

Total complexity of an epoch: O(NDK
3 +NDN

+NIK +
∑ND

i=1 SiK
2)

the previous value of the feature vector and M = diag (I + λinI). The pseudocode of
the conjugate gradient method is presented in Algorithm 5.3.1. The conjugate gradient
method converges to the exact solution in at most K steps. If NI = K, it provides
the exact solution, however it is often sufficient to run fewer inner iterations for a good
solution.

5.4 Complexity

The bottleneck of the CG method is the matrix-vector multiplication with A and the
inversion of M in each iteration (see Algorithm 5.3.1).
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Algorithm 5.3.1 Conjugate gradient method

Input: A: K × K symmetric positive definite matrix; b: output vector; x(0): initial
solution; M : preconditioning matrix (e.g.: diag(A)); NI : number of iterations
Output: x: approximate solution of Ax = b
procedure solveCG(A, b, x0, M , NI)

1: r(0) ← b−Ax(0)
2: z(0) ←M−1r(0)

3: p(0) ← z(0)

4: for i = 0, . . . , NI − 1 do

5: α(i) ← (r(i))T z(i)

(p(i))TAp(i)

6: x(i+1) ← x(i) + α(i)p(i)

7: r(i+1) ← r(i) − α(i)Ap(i)

8: z(i+1) ←M−1r(i+1)

9: β(i) ← (z(i+1))T r(i+1)

(z(i))T r(i)

10: p(i+1) ← z(i+1) + βipi
11: end for
12: return x(NI)

end procedure

Here A = C(i,j)+λI = J +
∑k=1

N
(i)+
j

wkvkv
T
k +λinI and I use the Jacobi preconditioner

(M = diag(A) = diag (I + λinI)). With careful implementation the matrix-vector

multiplication takes O(K2 +N
(i)+
j K) time and the inversion of the diagonal M matrix

takes O(K) time.

It takes O(NIN
(i)+
j K + NIK

2) time to compute a feature vector. This sums up

to O(NIN
+K + SiNIK

2) for recomputing one matrix instead of O(SiK
3), the com-

plexity of the exact method. The total complexity of iTALS-CG is O(NDN
+NIK +

NIK
2
∑ND

i=1 Si). Note that for iTALS-CG only J is needed, but I is not, i.e. line 15 can
be omitted from algorithm 4.2.1 when using the CG solver. Thus the term NDN

+K2

can be omitted from the computation time as well. If NI � K iTALS-CG scales
quadratically in the number of features (instead of cubically) in theory. In practice
(NDN

+ �
∑ND

i=1 Si) it scales linearly (instead of quadratically) with the number of
features for small K values. However, if NI ≈ K, then its complexity is the same as of
the exact iTALS. Since there are differences in the constant multipliers, iTALS-CG in
fact can be slower than the exact iTALS in this case.

5.5 Comparison of learning methods

In this section I compare ALS, ALS-CG and ALS-CD w.r.t. recommendation accuracy,
training times and convergence. I also determine the number of inner iterations based
on trade-offs between running time and accuracy. I use three algorithms — iTALS,
iTALSx and iALS [30] — with all three learning methods. As mentioned before, the
generalization of CG and CD learning for complex D dimensional models makes it
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possible to use these speed-up techniques for every ALS-based factorization.5

5.5.1 Recommendation accuracy

Tables 5.2, 5.3 and 5.4 show recommendation accuracy in terms of recall@20 for three
algorithms (iTALS, iTALSx and iALS) with seasonality and sequentiality using various
number of features. The number of inner iterations was set to 2 for both CG and CD. The
approximate versions used the same regularization coefficient as the corresponding base
method. It is possible that there exists a better configuration of hyperparameters for
the approximate versions, but keeping the parameters the same enables fair comparison,
and I found that these configurations fit also quite well for the approximate learning
methods.

Some values are missing from the table, because training with CD failed sometimes.
One can observe that CD is somewhat unstable if there are n-way (n > 2) interactions
in the preference model, the size of any of the interacting dimensions is low and the
number of features is high. Additional experiments with different preference models
confirmed this disadvantage.

The recommendation accuracy of ALS and the approximate methods are usually
very similar. There are some exceptions with moderate differences. Although the value
of the loss function (wRMSE) is correlated with the evaluation metric (recall), there
is no direct connection between them. Thus the approximate methods can outperform

5The actual speed-up and improvement in scalability depend on the efficiency of certain key steps
(e.g. matrix-vector multiplication for CG). These may differ from algorithm to algorithm.

Dataset K
Seasonality Sequentiality

ALS ALS-CG ALS-CD ALS ALS-CG ALS-CD

Grocery
40 0.1071 0.1065 0.1043 0.1339 0.1304 0.1317
80 0.1146 0.1193 N/A 0.1439 0.1381 0.1426
200 0.1312 0.1342 N/A 0.1570 0.1485 0.1540

TV1
40 0.1235 0.1194 N/A 0.1515 0.1521 0.1518
80 0.1167 0.1147 N/A 0.1553 0.1511 0.1483
200 0.1055 0.1063 N/A 0.1517 0.1520 0.1505

TV2
40 0.2001 0.2004 0.1972 0.3103 0.3066 0.3094
80 0.2123 0.2102 N/A 0.2957 0.2974 0.2961
200 0.2184 0.2111 N/A 0.2821 0.2848 0.2847

LastFM
40 0.0888 0.1040 0.0909 0.1657 0.1605 0.1579
80 0.1290 0.1417 N/A 0.1864 0.1796 0.1780
200 0.1382 0.1970 N/A 0.1784 0.2044 0.2045

VoD
40 0.0909 0.0913 0.0910 0.1380 0.1372 0.1347
80 0.0996 0.1002 0.0990 0.1723 0.1720 0.1627
200 0.1026 0.1036 0.1023 0.2116 0.2111 0.2092

(a) Results with iTALS

Table 5.2: Recommendation accuracy with iTALS.
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Dataset K
Seasonality Sequentiality

ALS ALS-CG ALS-CD ALS ALS-CG ALS-CD

Grocery
40 0.1164 0.1208 0.1135 0.1299 0.1272 0.1283
80 0.1406 0.1445 0.1340 0.1431 0.1385 0.1411
200 0.1927 0.1915 0.1842 0.1655 0.1531 0.1610

TV1
40 0.1127 0.1077 0.1043 0.1417 0.1410 0.1414
80 0.0942 0.0858 0.0905 0.1295 0.1309 0.1295
200 0.0696 0.0650 0.0688 0.1106 0.1098 0.1104

TV2
40 0.2312 0.2274 0.2195 0.2866 0.2846 0.2856
80 0.2223 0.2130 0.2117 0.3006 0.3017 0.2986
200 0.1791 0.1741 0.1807 0.3023 0.3067 0.3079

LastFM
40 0.0599 0.0691 0.0507 0.1869 0.1830 0.1859
80 0.0928 0.0773 0.0708 0.1984 0.1966 0.1929
200 0.1264 0.0907 0.0922 0.2003 0.2007 0.2006

VoD
40 0.0916 0.0931 0.0927 0.1068 0.1073 0.1068
80 0.0990 0.0999 0.0986 0.1342 0.1345 0.1347
200 0.0977 0.0980 0.0970 0.1726 0.1732 0.1728

(a) Results with iTALSx

Table 5.3: Recommendation accuracy with iTALSx.

Dataset K ALS ALS-CG ALS-CD

Grocery
40 0.0714 0.0745 0.0814
80 0.0861 0.0919 0.0966
200 0.1281 0.1298 0.1237

TV1
40 0.1111 0.1072 0.1074
80 0.0926 0.0899 0.0937
200 0.0769 0.0712 0.0799

TV2
40 0.2161 0.2043 0.2162
80 0.2145 0.1906 0.2140
200 0.1958 0.1702 0.1894

LastFM
40 0.0623 0.0545 0.0467
80 0.0922 0.0902 0.0574
200 0.1199 0.1204 0.0453

VoD
40 0.0758 0.0779 0.0758
80 0.0884 0.0889 0.0878
200 0.0928 0.0921 0.0918

(a) Results with iALS

Table 5.4: Recommendation accuracy with iALS.
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Method
Performs
similarly

Underperforms Outperforms Fails Total

CG 58 (77.33%) 11 (14.67%) 6 (8%) 0 (0%) 75 (100%)
CD 54 (72%) 9 (12%) 3 (4%) 9 (12%) 75 (100%)

Table 5.5: Overview of the relation of approximate methods to ALS. Similar performance
means that the difference in recall@20 is lower than 5%.

Method
Insignificant
difference

Worse
than ALS

Better
than ALS

Fails Total

CG 29 (38.67%) 28 (37.33%) 18 (24%) 0 (0%) 75 (100%)
CD 32 (42.67%) 26 (34.67%) 8 (10.67%) 9 (12%) 75 (100%)

Table 5.6: Summary of statistical significance tests comparing CG and CD to ALS.
(p = 0.05)

the exact ALS. There are only a few examples where the difference in the accuracy is
considerable, but there is no clear trend on the characteristics of these examples.

For overview on the relation of the approximate methods to ALS see Table 5.5. Since
small differences in recall usually do not increase practical accuracy, a threshold of 5%
was set. A method is considerably better than an other if its recall is by at least 5%
larger. CG performs slightly better than CD w.r.t. recommendation accuracy similarity
to the exact method (58 and 54). CG also has more (considerably) outperforming results
compared to the exact ALS than CD (6 and 3). The number of underperforming cases
is roughly the same for CG and CD (11 and 9). If there is any appreciable difference
vs. ALS, CD usually exhibits lower performance (9 of 12), while CG outperforms ALS
in more than one third of the cases (6 of 17).

Besides examining if differences between methods are considerable, I also checked if
the differences are statistically significant. The test set was split into 10 parts randomly.
The number of relevant and recommended items (i.e. the nominator of recall) was
measured for all parts.6 Then paired t-test was used to compare the methods with
p = 0.05. Table 5.6 contains the aggregated results. Statistical significance based
differentiating is more permissive than setting a threshold of 5%. The trends are similar
as in Table 5.5: CD underperforms ALS in slightly less cases than CG does; CG has
more outperforms than CD; and CD fails in 9 instances.

I also combined both comparison methodologies; Table 5.7 depicts the results. The
table is very similar to Table 5.5, there are only a few considerably different cases that
are not significantly different.

I can thus summarize that from the recommendation accuracy point of view, both
approximate learning methods are on par with the original ALS. However, due to its
stability and somewhat better accuracy, CG is the more appropriate choice than CD
in general. Let us investigate how much one can gain on the training time with the
approximate methods, since this can justify the use of an approximate method.

6With fixed list length and test set these values are proportional to the recall@20 value.
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Method
Performs
similarly

Underperforms Outperforms Fails Total

CG 62 (82.67%) 10 (13.33%) 3 (4%) 0 (0%) 75 (100%)
CD 57 (76%) 7 (9.33%) 2 (2.67%) 9 (12%) 75 (100%)

Table 5.7: Comparing CG and CD to ALS when differences should be both considerably
and statistically significantly better.

5.5.2 Running time

Figure 5.2 depicts the time required to run one epoch (i.e. computing each feature matrix
once) of iTALS with ALS, CG and CD with different number of features using the VoD
dataset. The number of inner iterations was set to 2 for CG and CD. The results provide
underpinning for my earlier statements about the practical scaling of the methods in
the number of features. It is clear that both approximate methods scale better than the
exact ALS. The speed-up factor is ∼ 10.6 for CG and ∼ 2.9 for CD if K = 200 (and
it becomes even greater for larger K values). For the more commonly used K = 80,
the speed-up is ∼ 3.5 and ∼ 1.3 for CG and CD, respectively. As expected, with few
features (e.g. K = 20), due to the computational overhead the approximate methods
can be somewhat slower than the exact ALS. Summarizing: for low factor models, ALS
can be an appropriate learner, while for higher factors, ALS-CG and ALS-CD offer
considerable speed-up.

For high factor models, CG is significantly faster than CD. CD starts scaling super-
linear much earlier (around K = 100 in this example) than CG (still linear for K = 200)
and also starts off with a steeper scaling graph. The speed-up from CD to CG for
K = 80 and K = 200 is ∼ 2.6 and ∼ 3.8, respectively.
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Figure 5.2: Running times of one epoch of different learning methods (ALS, CD, CG)
with iTALS w.r.t. different number of feature (K) values, using one CPU core
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5.5.3 Accuracy-running time trade-off

CG and CD allows for finding better trade-offs between running time and accuracy,
because the (a) difference between their accuracies is usually negligible, (b) they scale
better and can be trained faster than ALS and (c) models with higher number of features
generally perform better. To reinforce this claim about finding better trade-offs I plotted
the accuracy of iTALS versus its training time on the VoD dataset (using sequentiality as
the context). The experiments were executed on a multicore processor, using 4 threads.
For CG I did measurements withK = {20, 40, 60, 80, 120, 160, 200, 240, 320, 400, 480, 560, 640, 720},
for CD and ALS I stopped the at K = 240 and K = 200 respectively.
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Figure 5.3: Trade-offs between accuracy and training time of iTALS, using ALS, CG
and CD learning on the VoD dataset with sequentiality as the context. Executed using
4 threads with a multicore processor.

Figure 5.3 shows the results. The higher a line is on the graph, the better trade-offs
are available with the corresponding method. CG is clearly the best of all three methods.
It can be trained in much less time than the others and thus allows the usage of high
factor models that are more accurate. Although the rate of accuracy improvement with
the increasing number of features (and thus training time) slows down eventually, there
is still improvement for very high factor (200+) models. In this setting, CG can train a
model with K = 320 in the same time that is required for CD and ALS for a model with
80 factors. CD allows for slightly worse trade-offs than ALS until K = 80 (or training
time < 1100s). This is because CD has a relatively large overhead on the computations.
Note however that it is only slightly worse than ALS on this first half of the graph and
due to its better scaling it offers much better trade-offs than ALS when the number of
features is higher. Thus CD also generally offers better trade-offs than ALS, but it is
consistently worse than CG in that regard.

Note that training time is also heavily influenced by the number of epochs. Here I ran
every experiment for 10 epochs, because it is generally a good choice as these methods
tend to converge in 10 epochs under a variety of different setups. I found however that
the convergence of ALS, CG and CD is very similar (see below in Section 5.5.5) thus it
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does not affect their relations w.r.t. which method offers better trade-offs.

5.5.4 Number of inner iterations

The number of inner iterations is an important parameter of the approximate methods.
Generally, the larger this value is, the more accurate the algorithms are at the cost of
the increased training times. In this section I determine a good choice of this value by
analyzing the trade-off between training time and accuracy.

Figure 5.4 compares the accuracy of CG and CD to ALS with different number of
inner iterations. I selected two examples: one where CG and CD approximates ALS
well in Tables 5.2, 5.3 and 5.4 (iTALSx, LastFM, sequentiality, K = 80); and one where
they don’t (iTALSx, LastFM, seasonality, K = 80). Note that the former case is more
common than the latter. The behavior depicted on Figure 5.4 is general, i.e. the graphs
are similar in other settings as well (not shown).
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Figure 5.4: Recommendation accuracy with different number of inner iterations for CG
and CD learning; value for LS solver is shown for comparison

In the first example, both approximate methods start from a lower value at NI = 1.
From there, their accuracy is gradually increased and CG improves slightly faster. CG
and ALS compute exactly the same features if NI = K. Thus CG converges to ALS
as the number of inner iterations increases. They also yield the same accuracy if K is
sufficiently high (20 in this case). On the other hand, CD does not converge to ALS,
but gives quite similar accuracy values. It reaches the accuracy of ALS around the same
NI = 20 as well, and one can observe very slight variance of accuracy for NI > 20.
At NI = 80 the accuracy becomes even slightly better than that of ALS. This is not
a general behavior of CD, but as it does not converge to the exact ALS, sometimes
it can give slightly better results. Note that CG can also outperform ALS (as shown
in Tables 5.2, 5.3 and 5.4), but only by low NI values. Even is CG starts off with a
higher accuracy than ALS, by the increasing NI it converges to ALS. CD can, however,
theoretically outperform ALS at any NI values.

In the second example, there is a larger difference between accuracy values of the
approximate and the exact learning. CG has a relatively high accuracy at NI = 1, but
this is not a general behavior by any means. From NI = 2, the accuracy of CG starts
increasing monotonously and reaches that of the ALS around NI = 20. On the other
hand, the accuracy of CD varies throughout and it never even approaches that of the
ALS.
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Figure 5.5: Running times with different number of inner iterations compared to that
of the LS solver

The experiments show that CG converging to ALS can be either favorable or be
a limit. On one hand it attests to the stability of the method, on the other hand, in
some cases CD can outperform both ALS and CG. In practice, however, such a case is
not typical (see Tables 5.2, 5.3 and 5.4), thus I conclude that the convergence of CG is
useful.

Figure 5.5 compares the training times of CG and CD to ALS by different NI values.
The experiment used iTALSx, LastFM, sequentiality and K = 80. I note that the results
are very similar with other settings.7 CG scales significantly better with NI than CD.
CD reaches the training time of ALS around NI = 3 . . . 4, that is only ∼ 4 − 5% of K.
CG reaches the training time of ALS much later, around NI = 15, that is ∼ 19% of K.

Approximate methods are used to speed up the training. Therefore such NI should
be used when the training time is significantly less. Our experiments suggest that this
value is 1 . . . 2 for CD and 1 . . . 10 for CG if K = 80. For different values of K, these
intervals change relative to K. Generally, NI = 1 is a bad choice due to low accuracy
(see Figure 5.4 for example), therefore NI should be at least 2. Tables 5.2, 5.3 and
5.4 show that NI = 2 is usually a good choice as the accuracy of ALS is usually well
approximated. Larger NI values are not advised for CD due to its poor scaling with NI .
For CG, NI values up to 10–15% of K still result in considerable speed up, but usually
small values (2 . . . 5) are sufficient.

5.5.5 Convergence of accuracy

Figure 5.6 compares the accuracy of ALS, CG and CD (with 2 and 5 inner iterations
each) after each recomputation of any feature matrix (i.e. their convergence w.r.t.
accuracy). I investigated two cases: (1) when ALS converges faster (iTALSx, LastFM,
sequentiality, K = 80), (2) when ALS converges more slowly (iTALS, VoD, sequentiality,

7In the following sense: NI values relative to the number of features. That is, if K is lower/higher
then approximate methods reach the training time of ALS at lower/higher NI values.
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Figure 5.6: Accuracy of ALS, CG and CD methods (2 and 5 inner iterations) through
epochs. The horizontal axis denotes how far is the algorithm in the computations. N/X
denotes that the algorithm is in the N th epoch and finished computing the X matrix
(X ∈ (U, I, C) as in User, Item and Context feature matrix). Top: case, where ALS
converges quickly. Bottom: case, where ALS converges slowly.

K = 40). If ALS converges slowly then approximate methods can keep up and converge
with basically the same speed. If the convergence of ALS is faster, approximate methods
with NI = 2 are initially less accurate, but achieve the same results after a few epochs.
When the number of inner iterations is set higher (NI = 5), approximate methods follow
ALS quite nicely.

This suggests that NI = 5 would be a better choice for CG as it follows ALS more
closely. I suggest to use NI = 2 if speed is important, because one mostly gets similar or
better results than with ALS. If one prefers accuracy against training time then NI = 5
(or higher) can be used. For CD I still suggest using NI = 2 in every case, because of
the fast increase of training time with larger NI values.

5.5.6 Size of training data

In real life recommenders it is important to consider how much of the users’ event history
is to be used. Too much data does not only increase training time, but it may mask
changes in taste and behavior. On the other hand, using only the recent events results
in noisy training data and does not allow for models that capture long time interests.
The optimal trade-off depends on the domain, the dataset itself and even the contexts
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Figure 5.7: Accuracy of ALS, CG and CD methods (2 inner iterations) using different
subsets of the training data. The end of the training interval remains the same, only
the starting date changes. The three settings depicted here are Grocery, iTALS, sequen-
tiality, 80 features (top left); LastFM, iTALS, seasonality, 40 features (top right); VoD,
iTALS, sequentiality, 200 features (bottom left).

considered. Finding this optimal trade-off is beyond the scope of this research. Here I
therefore only investigate if the approximate methods behave similarly to ALS.

Figure 5.7 shows the accuracy (w.r.t. recall@20) with using different slices of the
training data in three different settings. Although the graph varies from setting to
setting, both CG and CD follow ALS closely in all settings. Therefore I conclude that
CG and CD behave similarly to ALS in this aspect as well.
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5.6 Summary

In Chapter 5 I proposed ways to speed-up ALS learning through using approximate
methods. The methods and the results described in this chapter were published in [25]
and the following theses are based on them.

Thesis 5.1 I proposed a general, conjugate gradient based approximation for ALS
in ALS based factorization algorithms. I showed that this approximation scales
linearly with the number of features in the range of practically used number of
feature values. I showed that this allows the usage of higher factor models and
finding better trade-offs between running time and accuracy. I showed that the
recommendation accuracy is affected only in a minor way if the approximation is
used instead of the exact ALS.

Thesis 5.2 I proposed a general, coordinate descent based approximation for ALS
in ALS based factorization algorithms. I showed that this approximation scales
linearly with the number of features in the range of practically used number of
feature values. I showed that this allows the usage of higher factor models and
finding better trade-offs between running time and accuracy. I showed that the
recommendation accuracy is affected only in a minor way if the approximation is
used instead of the exact ALS.

Thesis 5.3 I compared the conjugate gradient and coordinate descent based ap-
proximate solutions from a wide variety of aspects. I showed that the conjugate
gradient based method is better, because it (a) follows the exact solution more
closely in terms of recommendation accuracy; (b) is faster; (c) scales better; and
(d) more stable.

Thesis 5.4 I determined a good trade-off between running time and recommenda-
tion accuracy for both approximate methods. I proposed to set the number of inner
iterations to 2 in order to get this trade-off.



Chapter 6

The General Factorization
Framework

In this chapter I introduce the General Factorization Framework (GFF) [29]. GFF is
a single flexible factorization algorithm that has no fixed preference model over the
dimensions of its input. It rather takes the model as an input and takes care of the rest
by computing the feature matrices.

6.1 Preference modeling easily

As I showed in Chapter 4 on iTALS and iTALSx, different preference models are ap-
propriate for different situations. The only conclusion was that certain parameters of
the factorization (e.g. number of features) and the dataset (e.g. sparsity) are beneficial
for one or the other model. However it is worth noting that most factorization methods
only use one of these two models (N-way, pairwise), although the number of possible
models grows exponentially as the number of dimensions increases. It is also interesting
to observe that both of these models are symmetrical, i.e. all dimensions fill the same
role; meanwhile there are two distinguished dimensions in every recommendation task,
the user and the item. (See Section 6.3 for more details.)

The preference model has an effect on the learning procedure as it was discussed
in Chapter 4. It is especially problematic if transformations and separation of the
computations are required in order to maintain low complexity. And this is exactly
the case with the implicit feedback problem. For example iTALS and iTALSx seem
very similar, but there are crucial steps that are different and even rely on different
precomputed statistics.

The lack of proper exploration of preference modeling is due to the lack of flexible
tools in which one can experiment with various models without being required to imple-
ment a specific algorithm for each model. I therefore created the General Factorization
Framework (GFF), a single, flexible algorithm that takes the preference model as an
input and computes latent feature matrices for the input dimensions. GFF allows us
to easily experiment with various linear models on any context-aware recommendation
task, be it explicit or implicit feedback based. GFF opens up a new research path in
preference modeling under context.

The following properties were important at the design of GFF.

77
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1. No restriction on context: GFF works on any context-aware recommendation prob-
lem independently of the number and the meaning of context dimensions.

2. Large preference model class: the only restriction on the preference model is that
it must be linear in the dimensions of the problem1. This intuitive restriction does
not restrict the applicability to real-world problems.

3. Data type independence: besides the practically more useful implicit case, explicit
problems can be also addressed by simply changing the weighting scheme in the
loss function.

4. Flexibility: the weighting scheme of GFF is very flexible, enabling to incorporate
extra knowledge through the weights such time decay, as well as time dependent
weighting, missing not at random hypotheses and more.

5. Scalability: GFF scales well both in terms of the number of interactions in the
training set and in the number of features. This makes it applicable in real life
recommender systems.

6.2 Basic GFF

GFF is a general modeling framework — inspired by the latent factor CF approach
— which (1) efficiently integrates context data into the preference model; (2) allows
experimentation with non-traditional models for more accurate preference estimation.

The basic framework relies on SA-MDM (see Section 1.2.1). In recommendation
problems, the main goal is the modeling of user preferences on items, therefore one
dimension is dedicated for the users and one dedicated for the items. I use one ID at-
tribute in these dimensions. Other dimensions contain context data that helps modeling
user preferences. Context can be the location or time of the interaction, the device on
which the interaction was performed, or any other parameters that may influence the
user preference, including weather, referral’s link, search keyword, etc. Since SA-MDM
is used, each context dimension contains exactly one attribute. The preference model is
solely learnt from sample events (also called transactions).

Inspired by factorization methods, a feature vector of length K is assigned to each
possible value of each attribute. These values are referred to as entities. For instance, the
possible user IDs are entities. Therefore each attribute is represented as a feature matrix
(M (i) ∈ RK×Si , where Si is the number of entities in the ith dimension), assembled from
the feature vectors of entities of the attribute. Since each dimension consists of exactly
one attribute, dimensions are also represented by this feature matrix.

The modeling of the preferences is similar to the one used in Chapter 4. To briefly
reiterate: SA-MDM compliant data can be arranged into an ND dimensional tensor R.
The values in the tensor are the preferences for the given combination of entities (i.e.
a user-item-context combination). In case of explicit feedback data, the preferences are
ratings. Typically the data space is very sparse, few ratings are observed, others are
missing. The focus here is on the implicit case and therefore R is filled with binary

1Meaning that a dimension can not directly interact with itself in the model.
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preference information: if a combination of entities occurred in the training data then
the corresponding cell is set to 1, otherwise to 0.

ri1,...,iND
=

{
1, if ti1,...,iND

∈ T
0, otherwise

(6.1)

Since the missing feedback is clearly a weaker signal of negative preference than
the presence of positive feedback, the following weight function is used to weight entity
combinations:

W : (i1, . . . , iND
)→ R

W(i1, . . . , iND
) =

{
w1(i1, . . . , iND

)� w0(i1, . . . , iND
), if ti1,...,iND

∈ R
w0(i1, . . . , iND

) =
∏ND
j=1

(
µ(j)v

(j)
ij

+ γ(j)
)
, otherwise

(6.2)

where w1(i1, . . . , iND
) is the weight of entity combinations of the training set and

w0(i1, . . . , iND
) is the weight of missing entity combinations. Both weight functions

depend on the actual entities. This is the most permissive definition of the weight
function that still allows for efficient computations. For the sake of simplicity, here I
use a simple weight function by setting µ(j) = 0 and γ(j) = 1 for all j, and setting
w1(i1, . . . , iND

) = α · #(i1, . . . , iND
). That is w0(·) = w0 = 1 for every entity combi-

nation and w1(·) is proportional with the number of occurrences of the corresponding
combination in the training set. This basic weighting assumes that entity combina-
tions are missing at completely random [38] and that it is more important to accurately
predict for entity combinations with actual feedback than for ones with no feedback. 2

The simplified weight function used in the rest of this chapter is defined as follows:

W(i1, . . . , iND
) =

{
w1(i1, . . . , iND

) = α ·#(i1, . . . , iND
)� w0

i1,...,iND
, if ti1,...,iND

∈ R
w0(i1, . . . , iND

) = w0 = 1, otherwise

(6.3)
The loss is defined as the weighted sum of squared loss:3

L =

S1,...,SND∑
i1=1,...,iND

=1

W(i1, . . . , iND
)(r̂i1,...,iND

− ri1,...,iND
)2 (6.4)

The main novelty in GFF is that the preference model, i.e. the computation of
r̂i1,...,iND

is an input of the algorithm. This allows us to experiment with any linear
models beyond the usual ones. In the general framework, a preference model is a linear
model of the feature vectors such that: (1) a model consists of sums of Hadamard (or
elementwise) products; (2) each product contains at least two feature vectors; (3) in
a product each feature vector belongs to a different attribute (linearity); (4) constant
importance weights can be applied to each product.4

r̂i1,...,iND
= 1T

(
M (σ1)
π1 ◦ . . . ◦M (σp1 )

πp1
+ . . .+M

(σpq−1+1)
πpq−1+1 ◦ . . . ◦M (σpq )

πpq

)
(6.5)

2Note that by setting w0 = 0 and w1 = 1 and using ratings in R we get the standard explicit setting
in ND dimensions.

3Regularization is omitted for clearer presentation, but `2 regularization is used in the actual algo-
rithm.

4Omitted from the deduction for clearer presentation.
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where σk ∈ [1 . . . ND] and πk = ij if σk = j. Biases can be included in the feature
vectors and are not presented here separately due to clearer presentation. The model
basically consists of selected interactions between members of a subset of dimensions.

6.2.1 Training with ALS(-CG)

Recall that the framework is designed to work also for implicit feedback, thus we need an
optimization method that can efficiently handle the implicit setting. Methods that work
for the explicit case can not be applied directly for the implicit case due to scalability
issues that arise with the handling of missing feedback. One way to deal with this is
by sampling the missing feedback, thus easily averting scalability issues. The other
possibility is to smartly decompose computations into independently computable parts
that can be shared through computations. I follow the latter route.

I use an Alternating Least Squares (ALS) method. In ALS only one matrix is
updated at a time and all the other matrices are fixed. The optimization of the loss
function is done through finding the optimal values in one feature matrix, given the
others.

The two main advantages of ALS are (1) that it does not use sampling, therefore it is
usually more accurate and converges faster; (2) the computations of the feature vectors –
with linear models – are independent from each other and thus can be easily parellelized
on multi-core or multiprocessor systems. The main problem with ALS is that it requires
a least squares (LS) step for each feature vector computation and thus scales cubically in
K that makes it hard to train high factor models. Therefore I approximate the solution
of the least squares problem through conjugate gradient (CG) optimization introduced
in Chapter 5. I derive the algorithm up to the point of efficiently computing the least
squares problem. Then I apply CG to solve it. Chapter 5 on how to apply this learning
strategy effectively.

I use the loss function from equation (6.4) and insert the general linear factorization
model of equation (6.5) into it with the weighting scheme described in equation (6.3).

Without the loss of generality, I demonstrate the calculation of M (i) on the M (1)

matrix. For clearer presentation, the members of the model (equation (6.5)) are grouped
into two based on whether a column of M (1) is part of them:5

r̂i1,...,iND
=

=
(
M (σ2)
π2 ◦ . . . ◦M (σp1 )

πp1
+ . . .+M

(σpk−1+2)
πpk−1+2 ◦ . . . ◦M (σpk )

πpk

)T︸ ︷︷ ︸
(Q1)

T

M
(1)
i1

+

+
(
M

(σpk+1)
πpk+1 ◦ . . . ◦M

(σpk+1
)

πpk+1
+ . . .+M

(σpq−1+1)
πpq−1+1 ◦ . . . ◦M (σpq )

πpq

)T︸ ︷︷ ︸
(Q2)

T

1

(6.6)

When recomputing M (1), every other matrix is fixed, thus L is convex in the elements
of M (1). The minimum is reached when ∂L/∂M (1) is zero. The columns of M (1) can be
computed separately, because the derivative is linear in them. Each column is computed

5To avoid more complex notation, we assume that the columns of M (1) are the first members in the
products where they are present.
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similarly, therefore only the steps for M
(1)
1 (the first column of M (1)) are shown:

∂L

∂M
(1)
1

= −2

S2,...,SND∑
i2=1,...,iND

=1

r1,i2,...,iND
W(1, i2, . . . , iND

)Q1︸ ︷︷ ︸
O

+

+ 2

S2,...,SND∑
i2=1,...,iND

=1

w0r̂1,i2,...,iND
Q1︸ ︷︷ ︸

I2=I+JM(1)
1

+

+ 2

S2,...,SND∑
i2=1,...,iND

=1

(W(1, i2, . . . , iND
)− w0)r̂1,i2,...,iND

Q1︸ ︷︷ ︸
I1=I′+J ′M(1)

1

(6.7)

I introduce O, I1 = I ′+J ′M (1)
1 and I2 = I+JM (1)

1 to simplify further equations. O is
the weighted sum of Q1 type vectors from equation (6.6) over all possible configurations
involving the first entity of the first dimension. The weights are the products of corre-
sponding elements of the preference tensor R and the value of the weighting functionW
for that setting. Due to the values of the preferences, most of the members of this sum
are zero. Both I1 and I2 are the sum of a coefficient matrix multiplied by the vector we

seek (i.e. M
(1)
1 in this case) and a vector. The difference is that these parts of I2 (i.e.

I and J ) are the same for every column of M (1) (and therefore can be precomputed);
while those of I1 (i.e. I ′ and J ′) are not.
O, I ′ and J ′ can be computed efficiently (see section 6.2.2), however the naive

computation of I and J is expensive. Therefore we further transform I2. With the
expansion of r̂1,...,iND

(substituting (6.6) with i1 = 1):

I2 = 2w0

S2,...,SND∑
i2=1,...,iND

=1

Q1(Q1)
TM

(1)
1 +Q1(Q2)

T 1 (6.8)

Expanding either Q1(Q1)
T or Q1(Q2)

T results in sums of matrix products, where the
arguments are the elementwise products of multiple feature vectors:

S2,...,SND∑
i2=1,...,iND

=1

(
M

(j1)
ij1
◦ . . . ◦M (jm)

ijm

)(
M

(l1)
il1
◦ . . . ◦M (lt)

ilt

)T
(6.9)

where ji 6= jk if i 6= k, li 6= lk if i 6= k, ji ∈ [2 . . . n] and lk ∈ [2 . . . n]. With rearranging
this expression, only the following types of quantities are needed to be computed:

(a) C(j) =

Sj∑
i=1

M
(j)
i

(
M

(j)
i

)T
,

(b) O(l) =

Sl∑
i=1

M
(l)
i ,

(c) Sk,

(6.10)
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where (a) C(j) ∈ RK×K is the covariance matrix of the feature vectors of the jth feature
matrix; (b) O(l) ∈ RK is the sum of the feature vectors of the lth feature matrix; (c) Sk ∈
R is the domain size. (6.9) can be computed from (a), (b) and (c) using the following
operations: (1) elementwise product of RK×K matrices; (2) elementwise product of RK
vectors; (3) matrix product of RK vectors; (4) matrix–scalar multiplication. Note that
Sk is a fix value during the training process, and C(j) and O(j) only changes after the
jth feature matrix is recomputed. Therefore these quantities can be precomputed and
should be updated only once per epoch.

After O, I ′, J ′, I and J from equation (6.7) are computed, ∂L

∂M
(1)
1

= 0 can be solved

for M
(1)
1 . Instead of the least squares solver (LS), I use an approximate conjugate

gradient solver to get the new value of the feature vector. Algorithm 6.2.1 shows the
high level pseudocode of the training.

Algorithm 6.2.1 ALS-based learning of the general framework on implicit data

Input: T : training data; MODEL: the description of the desired model K: number of
features; E: number of epochs; λ: regularization coefficient
Output: {M (i)}i=1,...,ND

K × Si sized low rank matrices
procedure Train(T , MODEL, K, E, λ)

1: for i = 1, . . . , ND do
2: M (i) ← Random K × Si sized matrix

3: C(i) ←
∑Si

k=1M
(i)
k

(
M

(i)
k

)T
and O(i) ←

∑Si
k=1M

(i)
k

4: end for
5: for e = 1, . . . , E do
6: for i = 1, . . . , ND do
7: Compute the shared parts I and J
8: for j = 1, . . . , Si do
9: Compute O, I ′ and J ′

10: Add regularization

11: Solve ∂L

∂M
(i)
j

= 0 for M
(i)
j

12: end for

13: C(i) ←
∑Si

k=1M
(i)
k

(
M

(i)
k

)T
and O(i) ←

∑Si
k=1M

(i)
k

14: end for
15: end for
16: return {M (i)}i=1,...,ND

end procedure

So far regularization and biases were neglected. Regularization can be done by

adding a K ×K sized diagonal matrix to J +J ′ (i.e. to the coefficient matrix of M
(i)
j )

just before computing the feature vector. The model (6.5) can be extended with biases
by adding

∑ND
i=1

∑Si
j=1 vi,jbi,j to it, where bi,j is the bias value for the jth entity of the ith

attribute and vi,j is the weight of the bias. The training of this biased model can also
be done efficiently with the same complexity as the non-biased (K + 1)-feature model.
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6.2.2 Complexity of training

The complexity of one epoch (i.e. computing each matrix once) is O(NDN
+|O|K2 +∑ND

i=1 SiK
3) with a naive LS solver (see Table 6.1 for breakdown). This is reduced to

O(NDN
+|O|K+

∑ND
i=1 SiK

2) with a carefully implemented CG solver. Since |O|NDN
+ �∑ND

i=1 Si and K is small (K ∈ [20 . . . 300]), the first term dominates. Therefore the al-
gorithm scales linearly with both the number of transactions and K in practice (see
Section 6.3.4 for empirical results on running times).

Table 6.1: Complexity of computations

Task Complexity Comments

Computations required per columns of M (1)

O, I ′ and J ′ O(N+
1 K

2|O|) N+
1 is the number of training events, where

the value of the A(1) attribute is a
(1)
1 , and |O|

is the complexity of the model (i.e. the num-
ber of vector operations to compute r̂). This
is possible due to the definition of c weights
and r preferences, as most of the members in
the sums of O, I ′ and J ′ are in fact zeroes.

Solving for M (1) O(K3) Using the naive LS solver.

Total complexity of the above for all columns of M (1):
O(N+K2|O|+ S1K

3), (N+ is the number of transactions)

Computations once per computing M (1)

Computing I and J O(|O|K2) Assembled from members described in equa-
tion (6.10): C(j) and O(j). These need to be
recomputed when M (j) changes.

Recomputing C(1)

and O(1)
O(S1K

2) Computed after finishing the recomputation
of M (1).

Total complexity of an epoch: O(NDN
+|O|K2 +

∑ND
i=1 SiK

3)

6.2.3 Special cases

I now show that standard factorization algorithms are special cases of GFF. In standard
2D MF for implicit feedback [30], the preference of user u on item i is predicted as

product of user and an item features: r̂u,i = 1T
(
M

(1)
u ◦M (2)

i

)
. iTALS – the context-

aware tensor factorization model [24] – with 3 dimensions predicts the preference of user

u on item i under context-state c as r̂u,i,c = 1T
(
M

(1)
u ◦M (2)

i ◦M
(3)
c

)
, the product of each

features. Its modification – iTALSx – does the same by using r̂u,i,c = 1T
(
M

(1)
u ◦M (2)

i

)
+

1T
(
M

(2)
i ◦M

(3)
c

)
+1T

(
M

(2)
i ◦M

(3)
c

)
. If ratings are used in R with w0(·) = 0, w1(·) = 1

and r̂u,i = 1T
(
M

(1)
u ◦M (2)

i

)
, we get the classic ALS MF algorithm [7]. SVD++ [34] can
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be also derived from GFF if explicit compliant weighting and preferences are used and
the items rated by the users are included through binary attributes. The model should
be set accordingly to the SVD++ model. However I recommend using the extended
framework (see Section 6.5) instead of using many binary attributes, because of the
increased training time.

6.3 Modeling preferences under context

In this section I demonstrate the usefulness of the GFF by examining several models
therein. Recall that the preference model is an input of the framework that allows ex-
perimentation with novel models without implementing a specific algorithm. Therefore
novel models can be examined and compared to the traditional N-way and pairwise
interaction models.

A context-aware problem

My aim is to apply GFF to the implicit feedback based context-aware recommenda-
tion problem and find models that generally perform well. The area of context-aware
problems is wide, as any additional information to the user–item interaction can be
considered as context. In compliance with SA-MDM, we assume that the context di-
mensions are event contexts, meaning that their value is not determined solely by the
user or the item; rather it is bound to the transaction. E.g. the time of the transaction
is an event context, while the genres of the item is not.

Due to practical considerations, the context dimensions I use can be easily derived
from transactional data using the timestamp of the events. I use the time of the trans-
actions to derive seasonality and the order of the events to derive sequentiality. (See
more detailed definitions in Section 1.4.2.) The importance of these context dimensions
is that they are always available to use when timestamps are available, which is always
recorded during implicit feedback collection. Using these domain independent contexts
that require no additional data collection can increase recommendation accuracy when
used with the proper preference model.

6.3.1 Preference models

First, I introduce a highly simplified notation for preference models. The four dimen-
sions are denoted by U , I, S and Q for users, items, seasonality and sequentiality
respectively. The models consist of selected interactions between selected dimensions.
An interaction is denoted by putting the dimensions after one another. E.g. UI is the
user–item interaction, USI is the user–item–seasonality interaction and so on. A model
usually contains more than one interaction. Table 6.2 shows examples of this notation.

There are 11 different possible interactions with 4 dimensions, therefore the number
of possible preference models is 211−1 = 2047. Removing the ones that do not contain U
or I, we still get 2018 potential models. In the field of context-aware recommendations,
state-of-the-art factorization methods use two models. The pairwise interaction model
(UI +US + IS +UQ+ IQ+ SQ with all 4 dimensions) ([23, 51, 52]) assumes pairwise
interaction between each pair of dimensions. On the other hand the N-way model (UISQ
with all 4 dimensions) ([24, 63]) assumes that the preferences can be best described by
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Table 6.2: Examples of the simplified notation system

UI
Vanilla MF model (user–item interactions):

r̂u,i = 1T
(
M

(U)
u ◦M (I)

i

)
USQI

N-way model with all 4 dimensions (tensor factorization):

r̂u,i,s,q = 1T
(
M

(U)
u ◦M (I)

i ◦M (S)
s ◦M (Q)

q

)
UI + US + IS

Pairwise interaction model with 3 dimensions (U, I, S):

r̂u,i,s = 1T
(
M

(U)
u ◦M (I)

i +M
(U)
u ◦M (S)

s +M
(I)
i ◦M (S)

s

)

the joint interaction of all dimensions. [51] also mentions the generalization of the
pairwise interaction model, coined d-way interaction model (e.g. the 3-way interaction
model: UI+US+IS+UQ+IQ+SQ+USI+UQI+USQ+ISQ with all 4 dimensions).
This model includes all interactions between subsets of dimensions up to d size. The
authors argue that such a model is slow to train and usually does not result in more
accurate recommendations.

I approach the preference modeling from the perspective of the context-aware recom-
mendation task. In this setting the users initiate transactions with the items. Additional
variables (context) may or may not influence user behavior, therefore not all possible in-
teractions should be considered for preference modeling. I focus on the ones where either
the user, the item or both interact with a context. Interactions where contexts interact
with each other are disregarded (see Section 6.3.3 for additional justification), except
for SQ that is only kept for compatibility’s sake with the pairwise model. Therefore we
get to the followings:

• UI: Interaction between users and items, the classic CF model.
• USI, UQI, USQI: The context value dependent reweighting of the user–item

relation, i.e. the context influences how the users interact with items. More context
dimensions can be used for reweighting. But the more we use, the more sensitive
it becomes to noise and more latent features are required for filtering this out [23].
• US, UQ: The user–context interaction produces a context dependent user bias

that does not play role during the ranking but has noise filtering properties during
training. We allow only one context in these interactions, because additional
contexts would assume that different context dimensions interact somehow.
• IS, IQ: The item–context interaction results in a context dependent item bias

that helps in ranking as well as in learning. Only one context is allowed in these
interactions.
• SQ: Interactions between the two context dimensions. Required for the tradi-

tional pairwise model.

The models I used are depicted on Figure 6.1. Models on the right side follow the
pairwise interaction scheme, while models on the left are of the N-way flavor. Traditional
models – that were used also earlier – are indicated with orange background and black
text and novel models are with green background and white text. The models are sorted
to layers based on the dimensions used. In 2D there is only the classical UI model of
CF. With the inclusion of one context dimension (either S or Q) the N-way and the
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Figure 6.1: Hierarchy of the models

pairwise philosophy of preference modeling diverges. There are only a few novel models
with three dimensions and I only selected those that I coined interaction model. Things
get interesting with all four dimensions where one can create many novel models. I
selected the following novel models for experimentation:

• Interaction model (UI + USI + UQI): This model is the composite of the
base behavior of the users (UI) and their context-influenced modification of this
behavior (USI and UQI). This model assumes that the preferences of the users
can be divided into context independent and dependent parts. In the latter the
user–item relation is reweighted by a context dependent weight vector. USQI is
not included due to the noisiness of reweighting by more than one weight vector
simultaneously.
• Context interaction model (USI+UQI): Preferences in this model are mod-

eled by solely context dependent parts, i.e. it assumes that user–item interactions
strongly depend on the context and this dependency affects the whole interaction
rather than solely the items or users.
• Reduced pairwise model (UI+US+IS+UQ+IQ): This model is a minor

variation of the traditional pairwise model with the exclusion of the interaction
between context dimensions (SQ). The interaction with context is done separately
by users and items, i.e. it does not affect the whole user–item relation.
• User bias model (UI + US + UQ): Here it is assumed that only the user

interacts with the other dimensions. This results in a model where the user–
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item relation is supported by context dependent user biases. Note that during
recommendation, these context-aware user biases are constant, thus do not affect
the ranking. However they might filter out some context related noise during
training.
• Item bias model (UI+IS+IQ): This model assumes that the effect of context

can be described by context dependent item biases (e.g. items are popular under
certain conditions). The item biases affect the ranking as well as filter context
related noise during training.
• A complex model (UI +US + IS +UQ+ IQ+USI +UQI): This model

is the composite of the reduced pairwise and the interaction model. It can be
also treated as a reduced 3-way interaction model from which the context-context
interactions are omitted.

Note that I restricted our model space to those where exactly one feature matrix
belongs to each dimension. In GFF it is possible to use several set of features for selected
dimensions. By doing so it is possible to decouple the modeling of different effects from
each other. For example user and item interaction with a certain context dimension
can be modeled separately by using two sets of feature for the context dimension. This
is a far reaching research direction that is out of the scope of in this experiment, but
nonetheless made available by GFF.

6.3.2 Results

Table 6.3: Recall@20 values for different models within the framework. Differences
between the performance of models are statistically significant at p = 0.05. Traditional
models are with gray background. Best results are typeset bold.

Model Grocery TV1 TV2 LastFM VoD

USI + UQI
(context interaction model)

0.1504 0.1551 0.2916 0.1984 0.1493

UI + USI + UQI
(interaction model)

0.1669 0.1482 0.3027 0.2142 0.1509

USQI
(N-way model)

0.1390 0.1315 0.2009 0.1906 0.1268

UI + US + IS + UQ+ IQ
(reduced pairwise model)

0.1390 0.1352 0.2388 0.1884 0.0569

UI + US + UQ
(user bias model)

0.1619 0.0903 0.1399 0.1993 0.0335

UI + IS + IQ
(item bias model)

0.1364 0.1266 0.2819 0.1871 0.1084

UI+US+IS+UQ+IQ+SQ
(pairwise interaction model)

0.1388 0.1344 0.2323 0.1873 0.0497

UI +US+ IS+UQ+ IQ+
USI + UQI
(complex model example)

0.1389 0.1352 0.2427 0.1866 0.0558

Table 6.3 shows the accuracy in terms of recall@20 of two traditional models and
the six novel models I’ve just introduced.
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There exists a novel model with all five datasets that performs better than the
traditional models. In 4 out of 5 cases, the interaction model (UI +USI +UQI) is the
best and it is the second best in the remaining one case. Thus this model is not only
intuitively sound but also performs well, which underpins our assumptions on preference
modeling. The context interaction model (USI +UQI) comes second in 3, and third in
2 cases. Interestingly, the user bias model (UI + US + UQ) is the second best in 2 out
of 5 cases while worst one in the other 3 cases. This can be explained by the differences
between the repetitiveness of the datasets. Highly repetitive datasets are affected more
heavily by sequentiality and benefit from the noise filtering property of the UQ member.
As sequentiality is more closely related to user behavior than to the items, UQ is much
more effective than IQ.

The reduced pairwise model is better than the full pairwise interaction model in
all cases, however the difference is negligible in 3 out of 5 cases. But the difference
is ∼ 14.44% by VoD and ∼ 2.8% by TV2 dataset. Finally, note that the complex
model generally does not improve over the reduced pairwise model considerably and
is always worse than the interaction and the context interaction models. Three way
interactions contribute to the score in a lesser way, because feature values are generally
small and thus three way products generally give smaller values. This causes the context
dependent biases to be more prominent initially, thus the features are set accordingly
to optimize the bias values. This confirms the observations by [51] finding the d-way
interaction model no more useful than the pairwise interaction model. However this
problem might be tackled by using two sets of features for S and Q, separately for the
three way interactions and context dependent biases.

Table 6.4: Improvements over traditional models

Dataset Best model Improvement Models better than
traditional ones (out
of 6)

Grocery UI + USI + UQI +20.14% 3
TV1 USI + UQI +15.37% 2
TV2 UI + USI + UQI +30.30% 5
LastFM UI + USI + UQI +12.40% 3
VoD UI + USI + UQI +19.02% 2

Table 6.4 summarizes the improvements by novel models over the traditional ones.
The best novel model (interaction model in 4/5 and context interaction model 1/5)
outperforms the best traditional model by 12–30% in terms of recall@20. This difference
is significant. Besides, there are several novel models for each dataset that outperform
the traditional models by more than 5%. These include the context interaction model
and models specifically good for the data (e.g. the user bias model for Grocery and
LastFM).

So far the number of features was fixed at K = 80. However this parameter can
significantly affect the relation of models. In Section 4.4 I compared the pairwise and
the N-way model on two 3 dimensional context-aware problems. I found that pairwise
models perform better with lower number of factors, but N-way models improve more
rapidly as K increases. This is due to low factor models blurring different aspects of the
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Figure 6.2: Model accuracy versus number of factors.

entities together, thus making the reweighting of the N-way model more difficult, if not
impossible.

Figure 6.2 depicts recall@20 for different values of K ranging from 40 to 400. Five
models were selected for this experiment: the well performing interaction (UI +USI +
UQI) and context interaction (USI +UQI) model; the traditional N-way (USQI) and
pairwise (UI + US + IS + UQ + IQ + SQ) model; and the reduced pairwise model
(UI + US + IS + UQ + IQ). The results are presented on the LastFM dataset. At
K = 40 USI+UQI and USQI are clearly worse than the other models and the reduced
pairwise model is even slightly better than UI + USI + UQI and the pairwise model.
By K = 400 the context interaction model is leading slightly (within 2%) compared to
the interaction and the traditional N-way models. The pairwise and reduced pairwise
models on the other hand lag behind by more than 15%. We can observe that as K
increases, the accuracy of models with members of higher order of interactions increase
more rapidly. The N-way model improves the fastest and would probably outperform
other models if the K is sufficiently high. On the other hand, larger K values (at or
beyond 400) require longer training time and even more importantly, comes with longer
recommendation times, therefore their practical use is limited.

It is also worth noting that UI+USI+UQI performs more stable than USI+UQI
or the N-way model. This is due to the UI part (i.e. the context independent user–
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item relation) stabilizing the prediction. I conclude that the interaction model (UI +
USI + UQI) performs well not just for K = 80 but for practically important K values
in general.

6.3.3 Context-context interactions

We discussed that interactions between context dimensions should be excluded from the
model. Comparing the pairwise and reduced pairwise model showed that modeling such
interactions does not increase accuracy and sometimes even degrades it. From a recom-
mendation task perspective, context dimensions never interact with each other. They
can influence the users’ behavior (also via their active/inactive status), and through
the users they affect the consumption pattern of items as well. One could argue that
other context dimensions are also affected in a similar way. However recall that not all
dimensions are equal and the main focus in recommendation is to recommend items to
the users (under different contexts). Even if certain context dimensions correlate, there
is no direct interaction between them.

I also argue that context dimensions should be independent from each other. The
context-aware recommendation task becomes harder [45] and slower [55] as the number
of dimensions increase. Therefore context dimensions should ideally capture different
aspects of the data rather than describing the same or highly correlated characteristics
in different ways.

The context dimensions of the example setting (S and Q) are fairly independent
from each other. To quantify the independence of two context dimensions C(1) and
C(2), the following probability distributions can be approximated from the training

data: P (C(1)) =
{
P (C(1) = c

(1)
i )
}

and Pj(C
(1)) =

{
P (C(1) = c

(1)
i |C(2) = c

(2)
j )
}

. The

average Kullback–Leibler divergence between P (C(1)) and Pj(C
(1)) for all j can be then

computed. Small average KL divergence means that P (C(1)) can be used in the place of
Pj(C

(1)) distributions. In other words knowing the state in C(2) gives us low information
on the state in C(1).

This experiment was executed with C(1) = C(2) = S (totally dependent context
dimensions); C(1) = S, C(2) = Q (sequentiality’s information on seasonality); C(1) = Q,
C(2) = S (seasonality’s information on sequentiality); C(1) = S, C(2) = S′; C(1) = S′,
C(2) = S, where S′ is seasonality with the same season as S, but uses different time
bands. The results are shown in table 6.5. It is obvious that seasonality has little
information on sequentiality and vice versa, therefore these context dimensions hardly
correlate. This explains why the full pairwise model performs worse than the reduced
pairwise model.

6.3.4 Training time

Figure 6.3 shows the time of one epoch (i.e. computing each feature matrix once) for
selected models for different values of K on the VoD dataset. The experiments were
carried out using a single core of a multi-core CPU machine. Note that the computa-
tion can be easily parallelized, therefore these training times can be greatly reduced in
practice. As stated in Section 6.2.2, the running time scales linearly with the number of
features for K in the practically useful range. There is a difference between the actual
time of training for different models as it also depends on the complexity of the model.
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Table 6.5: Average KL divergences from P (C(1)) to Pj(C
(1))

Data set
Average DKL

(
Pj(C

(1))||P (C(1))
)

C(1) = S C(1) = S C(1) = S C(1) = Q C(1) = S′

C(2) = S C(2) = Q C(2) = S′ C(2) = S C(2) = S

Grocery 3.2574 0.0696 2.2997 0.0695 2.5238
TV1 3.1032 0.0189 1.7235 0.0171 1.5203
TV2 2.8132 0.0811 2.7979 0.0947 2.7707
LastFM 2.6376 0.0030 2.6162 0.0976 2.5618
VoD 2.6300 0.0262 1.8024 0.0547 2.1650
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Figure 6.3: Training times of models

The complexity of the model is the number of operations required to compute the pref-
erence model. If the set of dimensions is fixed, the scaling in the model complexity is
linear. In accordance with this the N-way model is the fastest and the pairwise model is
the slowest from the selected ones. Also note that modeling the useless SQ interaction
also slows down the training.

6.4 Comparison with state-of-the-art algorithms

In this section I compare GFF with other methods. The qualitative comparison fo-
cuses on pointing out key differences between GFF and other factorization algorithms.
Although the main advantage of GFF is not necessarily that it can outperform other
methods, but rather its flexibility (regarding the model and weighting); I also include
a quantitative comparison with widely accepted algorithms such as Factorization Ma-
chines (FM) [51] and Bayesian Personalized Ranking (BPR) [53].
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6.4.1 Qualitative comparison with factorization methods

Factorization Machines

Rendle et. al [51] proposed factorization machines (FM) as a general factorization
method. FM is for rating prediction (explicit flavor). Implicit feedback problem can
be tackled through subsampling negative feedback. Each rating is associated with dif-
ferent attributes, for example the user who rated, the item that was rated, the context of
the rating, metadata of the item, etc. The preference model is a full (weighted) pairwise
model: the prediction score is given by the sum of pairwise interaction scores between
every pair of dimensions.6 The weight of a certain interaction is determined by the
weight of the two corresponding attributes; this is an input of the algorithm. It builds
on the SA-MDM datamodel just like basic GFF, therefore it handles composite dimen-
sions through binary variables as dimensions. This solution has two drawbacks: (1) it
significantly increases the training time; (2) and a lot of unnecessary interactions are
modeled between these binary attributes. The authors proposed a partitioning method
to overcome this problem in [55], which basically results in excluding certain interactions
from the pairwise model. The latent feature vectors can be learned by several learning
methods: stochastic gradient descent (SGD), coordinate descent7, adaptive SGD and a
Bayesian inference using Markov Chain Monte Carlo (MCMC). The latter is advised as
the best one of the four. The implementation of FM is available in libFM.8

The key differences between GFF and FM are as follows: (1) FM uses a subset
of all possible pairwise interactions between dimensions, while GFF can use arbitrary
linear preference model. (2) FM handles implicit feedback through subsampling the
missing (negative) feedback and is mainly an explicit method. GFF smartly decomposes
computations therefore does not need to sample implicit feedback and with the proper
weighting it can either be an implicit or an explicit method. (3) Both basic GFF and
FM builds on SA-MDM, however the extended GFF (introduced in Section 6.5) is fully
compliant with the more extensive MDM. (4) The optimization strategy of the two
methods differ.

SVDFeature

Chen et. al proposed another framework, coined SVDFeature, that uses a subset of the
FM model [12, 13]. Basically it assigns each attribute either to the user or to the item
as a property. A feature vector is defined for each property (including the item and
the user itself), and the feature vector of the item (or user) is the weighted sum of the
feature vectors of its properties. The rating is predicted by the scalar product of these
aggregated feature vectors. In other words, it uses a partial pairwise model that only
keeps the interactions between item and user attributes. The authors claim that doing
so the training time decreases drastically compared to that of FM, and the interactions
dropped are mostly useless (such as interactions between metadata terms of the items).
Our experiments also show that leaving out useless interactions results in more accurate
models. SVDFeature can incorporate either explicit or implicit feedback as it uses a

6We rephrased here the feature matrix based introduction of the original paper.
7A certain version of ALS, which optimizes for one parameter at a time.
8http://libfm.org

http://libfm.org
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ranking loss function. The model is learned using SGD. The datamodel is a dimension
restricted MDM with only 2 dimensions, one for users and one for items.

The key differences between GFF and SVDFeature are as follows: (1) SVDFeature
uses a fixed model, GFF takes the preference model as an input. (2) The methods use
different data models, although the data model of SVDFeature is a special case of the
data model of the extended GFF. (3) SVDFeature uses (pairwise) ranking loss, GFF
uses pointwise ranking loss. (4) The optimization strategies differ.

Due to the incompatibility between the data model of the basic GFF and SVDFea-
ture, and the perception of context – i.e. a context should be assigned to either the
items or the users – no direct quantitative comparison is possible.

Other implicit context-aware factorization algorithms

iTALS [24] and iTALSx [23] are general factorization algorithms that use the N-way
and pairwise models respectively. The key difference to GFF is that GFF does not use
a fixed model. By setting the appropriate preference model, iTALS and iTALSx are
special cases of GFF.

TFMAP [63] is a tensor factorization algorithm for three dimensional context-aware
problems that minimizes a listwise ranking loss function with SGD on a fixed 3-way
model. GFF is much more flexible as TFMAP restricts not just the model class, but
also the number of dimensions. The loss function and the optimization strategy of the
two methods also differ.

6.4.2 Quantitative comparison

Although I argue that the main novelty and the importance of GFF is allowing experi-
mentation with novel models without requiring specific implementations, a quantitative
comparison to Factorization Machines (state-of-the-art in context-aware factorization)
and to Bayesian Personalized Ranking (state-of-the-art in handling implicit feedback)
is included in this section. Both FM and BPR require the missing (negative) feedback
to be sampled. I followed the steps of [45] and sampled a negative example to each
positive example by replacing the item of the positive example with an item that has
never occurred in the training set with the same user and context values. For FM I
assigned ratings 1 and 0 to positive and negative feedbacks, respectively.

FM was trained using MCMC, as suggested by the authors of the method. The
number of factors was set to K = 80 and the number of iterations was set to 10, because
of practical requirements for the training time. Also, the method converged fairly well
in 10 epochs. There were no additional hyperparameters to be optimized by FM.

The number of features and iterations was set to K = 80 and 10 respectively for
BPR as well. The regularization coefficients and learning rate were optimized in the
same way we optimized hyperparameters for GFF.

Table 6.6 shows the results (recall@20). For GFF, the pairwise, the N-way and
the best non-traditional model (either interaction or context interaction model) was
included. GFF outperforms FM in 3 out of 5 cases, performs very similarly in 1 case
and underperforms in 1 case. GFF outperforms BPR in all cases.

W.r.t. running times, I compared FM and GFF. BPR was not included because it
does not deal with context and therefore has an unfair advantage. The training time
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Table 6.6: Comparison of GFF models to LibFM and BPR

Dataset
GFF

LibFM BPR
N-way Pairwise Best non-traditional

Grocery 0.1390 0.1388 0.1669 0.0912 0.1412
TV1 0.1315 0.1344 0.1551 0.1683 0.1365
TV2 0.2009 0.2323 0.3027 0.3081 0.1957
LastFM 0.1906 0.1873 0.2142 0.0652 0.2002
VoD 0.1268 0.0497 0.1509 0.1151 0.0539

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

T
im

e
 o

f 
o

n
e

 e
p

o
ch

 (
s)

FM GFF - USQI GFF - UI+US+IS+UQ+IQ+SQ GFF - UI+USI+UQI

Figure 6.4: Training times of FM and GFF models on the LastFM dataset.

of FM was measured by both libFM’s inner logging as well as from external code and
the two values were very similar. For this measurement I did not provide a test set
for libFM in order to exclude the computation of the test error. Figure 6.4 depicts the
results on the LastFM dataset. GFF was twice as fast with the pairwise model and
even faster with the interaction model. Due to the need of subsampling the negative
feedback, FM trains on twice as many examples for the same problem. This increases
the time required for training significantly. Note that the results were achieved on a
single core of a multi-core CPU, and the training times of GFF can be greatly reduced
if multiple cores are used in parallel.

6.5 Extension – MDM compliant GFF

In this section I release the restrictions imposed by SA-MDM and extend GFF to allow
more attributes per dimensions and thus make it fully compliant with the Multidi-
mensional Dataspace Model. More attributes per dimensions are useful for including
multi-value properties of the interacting entities, e.g. tags associated with the items;
session behavior; the social network of the users; etc. Such information could be also
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included in SA-MDM through several dimensions with a single binary attribute. Each
attribute describes if a property – the value of an attribute of a dimension in MDM
(see Section 1.2.1) – (e.g. a tag) applies to the entity – i.e. an instance of a dimen-
sion in MDM – (e.g. item) that participates in the transaction. The main drawback of
this method is that it results in many dimensions and therefore significantly increases
training times.

In my solution I intend to handle properties of entities together. This is achieved
by bundling their binary attributes into one dimension in accordance with MDM. This
admittedly restricts the space of possible preference models by excluding interactions
between these attributes. Analogously as for context interactions, I can also argue to
exclude property interactions – between properties of the same kind, since they are
irrelevant from the recommendation point of view.

Our solution is inspired by NSVD1 [47] and is as follows.

1. A dimension should be defined with entities (i.e. different values of the context
variable) that are associated with the properties;

2. Each property is represented by an attribute whose value denotes the strength of
the attribute for a given entity. A (sparse) mixing matrix (W ∈ RS(P )×S(E)

, where
S(P ) and S(E) is the number of properties and entities, respectively) is formed
from the values of the attributes.

3. A feature vector is assigned to each property.

4. Since each entity is the weighted sum of its properties, the feature vector of an
entity is a weighted sum of the feature vectors of its properties’ feature vectors.
This allows the learning algorithm to be unchanged for dimensions with single at-
tributes, because the feature vectors can be computed for the entities that directly
participate in the transaction. The feature vectors of the entities can be computed
using matrix multiplication: M (E) = M (P )W .

Since the derivative of the loss function w.r.t. the properties’ features is not linear
in the columns of M (P ), an approximative solution is required. I chose to update the
properties’ feature vectors as if they were independent. To ensure convergence, after
training some of the properties’ feature vectors, the model should be updated before
continuing. Since the update is fast, it can be done after the computation of each
vector. Moreover, the update of feature vectors can be parallelized. This method can
be still slow if the average number of properties assigned to entities is high.

An other way is to apply two-phase learning similarly to [49]. The first phase com-
putes M (E) using a normal ALS step. In the second phase M (P ) is computed from
M (E) and W . The finishing step is to compute M (E) = M (P )W from the new M (P ),
thus the following ALS steps remain consistent. Naturally, the two-phase learning is
less accurate, therefore we stick to the direct optimization when possible.

Two examples are shown below on how this extension can be used.

6.5.1 Item metadata as attributes

CBF is often combined with CF to create hybrid algorithms that outperform both of
them. E.g. item metadata helps overcoming the item cold-start problem in CF [10].
Here we show how to include item metadata into a model using the extended GFF.
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Let us assume that the relevant item metadata is tokenized, preprocessed. From
there the outline of the solution as follows.

1. We create an item dimension, its entities are the items, to which we will assign
the metadata attributes.

2. Each metadata token is represented by an attribute that indicates the strength of
a token for the items. If the item is not associated with the token, the value of
the attribute is set to 0 for that item. W is created from these values.

3. A feature vector is assigned to each token.

4. The feature vectors of the items now can be computed as M (I) = M (M)W , where
M (M) is the feature matrix of the metadata attributes.

6.5.2 Session information

Different sessions of the same user are usually treated uniformly by recommender sys-
tems, assuming that user preference does not change across sessions. Session informa-
tion, however, can be of great help in identifying what the user is currently interested
in. This information can further refine recommendations and is exceptionally useful in
domains where users likely have broader interests (e.g. e-commerce, news sites).

As the context of the transaction, let us assign all items visited during the session
but the actual one. Thus the whole session is assigned to each transaction. I excluded
the actual item from the session context, since this is the prediction target. Following
the outline:

1. Each transaction will be a separate entity, thus the dimension will consists of all of
the transactions. The sessions can not be used as entities, because the associated
attributes are different by each transaction of the session since the actual item is
omitted.

2. Each item in assigned with an attribute. The attribute is either binary (i.e. the
item belongs to the session or not) or weighted by the occurrences of the item in
the session. W is created assigning items to each event.

3. Each item is assigned with a feature vector.

4. The feature vectors of the events now can be computed as M (E) = M (X)W , where
M (X) is the feature matrix of the items. Note that M (X) is a different matrix than
the feature matrix of the item dimension M (I).

6.5.3 Experimental evaluation

Initial experiments were done with the extended GFF to incorporate item metadata and
session information into the factorization model. The general settings are the same as in
Section 1.4. A user session is defined as a sequence of events of a user where the largest
gap between two consecutive timestamp is less than 20 minutes. Item metadata consists
of the tokenized title, description and category string of the items. The data was filtered
for too common and rare tokens. For both context, the weights were `2 normalized on
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an entity by entity basis. The experiments were run on the Grocery dataset, because
here the usage of sessions is justified and we have the necessary metadata available.

Session context is denoted by X, metadata is by M in our simplified notation. The
following models were compared to the classic CF model (UI):

• XI: Interactions between items and the session. Basically this model guesses the
actual item based on the other items in the session.
• UI + XI: The classic user–item interaction refined by the actual session.
• UM : The items are replaced by the sum of their metadata in the classic CF

model.
• UI + UM : Two aspects of the items are used to model interaction with users,

their entity and the sum of their metadata.
• XM : Interaction between other items on the session and the metadata of the

actual item.

Table 6.7: Results for the extended framework on Grocery

Model Recall@20 Improvement

UI 0.1013 N/A
XI 0.2248 +121.97%
UI +XI 0.2322 +129.36%
UM 0.0614 −39.34%
UI + UM 0.2166 +113.87%
XM 0.2154 +112.77%

Table 6.7 summarizes the results. Note that data from the test set is needed for
predicting with session in the form of other items of the test session. The results suggest
that session information is very important for recommending with the Grocery dataset.
XI gives strong result in and of itself and is further improved by mixing in the UI
interaction as well. While metadata does not perform well in the place of items, they
complements the basic UI model well and is also useful for averting the item cold-start
problem.
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6.6 Summary

In Chapter 6 I proposed a flexible algorithm by the name of GFF to allow for experi-
mentation with novel preference models. The method and the results described in this
chapter were published in [29] and the following theses are based on them.

Thesis 6.1 I developed GFF (General Factorization Framework), a single, flexible
factorization algorithm for the implicit feedback based context-aware recommenda-
tion problem. The flexibility of GFF lies in taking the preference model as an input.
The model can use arbitrary number of dimensions and allows using any linear in-
teraction between the subsets of aforementioned dimensions. I demonstrated that
this flexibility allows for experimenting with novel preference models. The data
model of the basic GFF is the single attribute MDM, which is appropriate for the
context-aware problem in practice.

Thesis 6.2 I proposed several novel preference models for the context-aware rec-
ommendation task. I measured the usefulness of these models w.r.t. recommenda-
tion accuracy (measured by recall) on a four dimensional context-aware problem.
The context dimensions I used in this problem can be generally derived from all
practical datasets based on the timestamp of the events, making them especially im-
portant. I showed that there are multiple novel models that outperform traditional
models used in the literature.

Thesis 6.3 I showed that one of the proposed models, the interaction model gen-
erally performs well. This model is the composite of the user–item (UI) and the
context reweighted user–item (UCI) relations. It was the best on four datasets out
of five datasets and second on the fifth one. The best model on the fifth dataset is
the context interaction model that is closely related to the interaction model.

Thesis 6.4 I compared the recommendation accuracy of the best novel models in
GFF to that of the state-of-the-art factorization methods. The novel models in
GFF significantly outperformed the state-of-the-art on three out of five datasets
and gave similar results on one.

Thesis 6.5 I extended GFF to be compliant with the Multidimensional Dataspace
Model and to be able to incorporate additional information, e.g. session data and
item metadata more efficiently. The preliminary experiments I executed showed
that using session information can significantly increase recommendation accuracy.



Summary

In this dissertation I focused on the implicit feedback based recommendation problem. I
aimed at increasing recommendation accuracy by incorporating additional information
into the recommendation. I focused on latent feature based algorithms and used mostly
context information, thus the majority of this work is in the field of context-aware
recommendations on implicit feedback data. The achievements are described by the
following thesis groups.

Thesis Group 1: I proposed initializing matrix factorization using information on the
items (or users) to increase recommendation accuracy. (See Chapter 3 for details. The
methods and the results were published in [26, 27].)

Thesis 1.1 I proposed to initialize the feature matrices of matrix factorization
methods based on the similarities of its entities instead of starting from randomly
initialized matrices. The initialization scheme is generic and thus can be applied
to any matrix factorization. It consists of two steps: (1) descriptor vectors are
assigned to the entities; (2) the descriptors are compressed to fit the size of the
feature vectors. I applied the scheme on implicit ALS and showed on five datasets
that this type of initialization can increase the recommendation accuracy measured
by recall and MAP.

Thesis 1.2 I proposed the SimFactor algorithm that yields feature vectors, which
preserve the original similarities between entities more accurately. SimFactor does
not require the computation of the similarity matrix (which would be infeasible). I
showed on five datasets that similarities are better estimated with this algorithm as
with pure compression of the descriptor vectors. I also showed that feature vectors
yielded by SimFactor are generally better for initializations than those produced by
pure compression.

Thesis 1.3 I proposed the Sim2Factor algorithm that is able to yield feature vec-
tors whose similarity approximates the similarity between entities, based on how
similar they are to the rest of the entities. Sim2Factor does not require the compu-
tation of the similarity matrix. I showed that feature vectors of this kind are useful
for initialization.

Thesis 1.4 I proposed to use context for describing entities. I showed that context
based descriptors are better for initialization than metadata based ones. I also
showed that the weighted combination of context and metadata based initializations
can further improve the recommendation accuracy.
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Thesis Group 2: I proposed the iTALS algorithm to solve the implicit feedback based
context-aware recommendation task. (See Section 4.2 of Chapter 4 for details. The
method and the results were published in [24].)

Thesis 2.1 I developed iTALS, a tensor factorization method that uses pointwise
ranking via optimizing for weighted sum of squared errors. It estimates preferences
using the N-way interaction model, i.e. the sum of elements in the elementwise
product of feature vectors from each dimension. I showed that iTALS can be applied
to solve the implicit feedback based context-aware recommendation problem by using
ones and zeroes for positive and missing feedback respectively with higher weights
for positive feedback.

Thesis 2.2 I showed that iTALS significantly outperforms the non context-aware
implicit matrix factorization and the prefiltering based context-aware baseline with
respect to recommendation accuracy, measured by recall.

Thesis 2.3 I demonstrated that iTALS can be trained efficiently on the implicit
feedback based context-aware recommendation problem, using alternating least squares.
I showed that iTALS can be efficiently used in practice as it scales linearly with
the number of events and quadratically with the number of features in the range of
practically useful number of feature values.

Thesis Group 3: I proposed the iTALSx algorithm an alternative solution to the im-
plicit feedback based context-aware recommendation task. (See Section 4.3 of Chapter 4
for details. The method and the results were published in [22, 23].)

Thesis 3.1 I developed iTALSx, a tensor factorization method that uses pointwise
ranking via optimizing for weighted sum of squared errors. It estimates preferences
using the pairwise interaction model, i.e. the sum of dot products between feature
vectors from each pair of dimensions. I showed that iTALSx can be applied to
solve the implicit feedback based context-aware recommendation problem by using
ones and zeroes for positive and missing feedback respectively with higher weights
for positive feedback.

Thesis 3.2 I showed that iTALSx significantly outperforms the non context-aware
implicit matrix factorization and the prefiltering based context-aware baseline with
respect to recommendation accuracy, measured by recall.

Thesis 3.3 I demonstrated that iTALSx can be trained efficiently on the implicit
feedback based context-aware recommendation problem, using alternating least squares.
I showed that iTALSx can be efficiently used in practice as it scales linearly with
the number of events and quadratically with the number of features in the range of
practically useful number of feature values.
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Thesis Group 4: I experimented with the iTALS and iTALSx algorithms, compared
them and identified easily accessible contexts. (See Section 4.4 Chapter 4 for details.
The results were published in [22–24].)

Thesis 4.1 I proposed to use sequentiality as context for recommendations. Se-
quentiality is the item with which the user previously interacted, before the current
one. I argued that this context information is available with every dataset where
transactions can be ordered based on their time of occurrence, which is common in
practice. I showed that using this information can significantly increase recommen-
dation accuracy to using no context and even to using seasonality as the context
in a wide variety of settings (dataset, algorithms, models, number of features).

Thesis 4.2 I compared the strengths and weaknesses of iTALS (N-way model) and
iTALSx (pairwise model). I found that the N-way model is more suitable when the
number of features is high and/or if the dataset is denser; and the pairwise model
is better otherwise.

Thesis Group 5: I proposed ways to speed-up ALS learning through using approximate
methods. (See Chapter 5 for details. The methods and the results were published in
[25].)

Thesis 5.1 I proposed a general, conjugate gradient based approximation for ALS
in ALS based factorization algorithms. I showed that this approximation scales
linearly with the number of features in the range of practically used number of
feature values. I showed that this allows the usage of higher factor models and
finding better trade-offs between running time and accuracy. I showed that the
recommendation accuracy is affected only in a minor way if the approximation is
used instead of the exact ALS.

Thesis 5.2 I proposed a general, coordinate descent based approximation for ALS
in ALS based factorization algorithms. I showed that this approximation scales
linearly with the number of features in the range of practically used number of
feature values. I showed that this allows the usage of higher factor models and
finding better trade-offs between running time and accuracy. I showed that the
recommendation accuracy is affected only in a minor way if the approximation is
used instead of the exact ALS.

Thesis 5.3 I compared the conjugate gradient and coordinate descent based ap-
proximate solutions from a wide variety of aspects. I showed that the conjugate
gradient based method is better, because it (a) follows the exact solution more
closely in terms of recommendation accuracy; (b) is faster; (c) scales better; and
(d) more stable.

Thesis 5.4 I determined a good trade-off between running time and recommenda-
tion accuracy for both approximate methods. I proposed to set the number of inner
iterations to 2 in order to get this trade-off.
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Thesis Group 6: I proposed a flexible algorithm by the name of GFF to allow for
experimentation with novel preference models. (See Chapter 6 for details. The method
and the results were published in [29].)

Thesis 6.1 I developed GFF (General Factorization Framework), a single, flexible
factorization algorithm for the implicit feedback based context-aware recommenda-
tion problem. The flexibility of GFF lies in taking the preference model as an input.
The model can use arbitrary number of dimensions and allows using any linear in-
teraction between the subsets of aforementioned dimensions. I demonstrated that
this flexibility allows for experimenting with novel preference models. The data
model of the basic GFF is the single attribute MDM, which is appropriate for the
context-aware problem in practice.

Thesis 6.2 I proposed several novel preference models for the context-aware rec-
ommendation task. I measured the usefulness of these models w.r.t. recommenda-
tion accuracy (measured by recall) on a four dimensional context-aware problem.
The context dimensions I used in this problem can be generally derived from all
practical datasets based on the timestamp of the events, making them especially im-
portant. I showed that there are multiple novel models that outperform traditional
models used in the literature.

Thesis 6.3 I showed that one of the proposed models, the interaction model gen-
erally performs well. This model is the composite of the user–item (UI) and the
context reweighted user–item (UCI) relations. It was the best on four datasets out
of five datasets and second on the fifth one. The best model on the fifth dataset is
the context interaction model that is closely related to the interaction model.

Thesis 6.4 I compared the recommendation accuracy of the best novel models in
GFF to that of the state-of-the-art factorization methods. The novel models in
GFF significantly outperformed the state-of-the-art on three out of five datasets
and gave similar results on one.

Thesis 6.5 I extended GFF to be compliant with the Multidimensional Dataspace
Model and to be able to incorporate additional information, e.g. session data and
item metadata more efficiently. The preliminary experiments I executed showed
that using session information can significantly increase recommendation accuracy.



Application of the results

The algorithms and the know-how resulting from this work have been successfully ap-
plied in practice. Some of the algorithms are implemented in the recommendation engine
of Gravity Research & Development Inc., a recommendation service providing company
with clients from all around the world in different domains. The algorithms were used
successfully in the live system as well as in other recommendation projects, tenders
and POCs (proof of concepts). The domains of the application include but not lim-
ited to online grocery shopping, VoD and live program recommendation on IPTV [69],
e-commerce webshops and classified sites.

The results also greatly contribute to a project of the European Unions Seventh
Framework Programme (FP7/2007-2013) by the name of CrowdRec9. CrowdRec aims
for creating the next generation of (practical) recommender systems by using context, in-
teractions with the users, analyzing streams and information from heterogenous sources.
My work falls into the context related part of CrowdRec.

9Grant Agreement n◦610594
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Future research directions

There are several ways in which this work can be continued.

Most immediate research questions are related to GFF. As GFF allows for flexible
experimentation, it would be interesting to have a look at other context dimension and
the performance of different models with those contexts. Other meaningful context
dimensions can be derived from timestamps alone (e.g. time between purchases) but
some datasets have other kind of contexts (e.g. location, device) that can possibly be
used for significantly improving recommendations with the proper preference model.

Although the flexibility if GFF is a great asset, finding the best preference model
manually can be hard. While the interaction and context interaction (and similar) mod-
els performed well with seasonality and sequentiality and some other context dimensions,
they are not necessarily the best performing models with every context. Therefore it
would be useful if GFF could propose a good enough model, or in other words it would
be able to learn the underlying preference model by itself. My preliminary work in this
topic shows promising signs, however the proper execution of such model learning is
hindered by multiple aspects of the factorization concept.

The experiments with the extended GFF are in the preliminary phase, mostly due to
long training times of the method in certain cases. Although it is fast for certain data,
it can be slow for others. Therefore the learning procedure could be optimized as part
of future work. It would also be interesting to look more closely on the usage of MDM
data, such as session information, item metadata and social networks of the users. Their
interaction with items, users and context dimensions still need to be discovered.

More loosely connected research paths are related to the context itself.

One interesting question is how to assess the quality of a context dimension before
using it in a model based on the data alone. This area includes (a) the assessment of
context quality in a certain model; (b) the assessment of context quality in an arbitrary
model (i.e. in which interactions it should be used); (c) improving context quality by
combining/splitting and automatically creating context-states within a context dimen-
sion.

An other topic is the usage of non standard context dimensions in factorization. Fac-
torization generally works with dimensions that contain atomic entities but no relation
is assumed between said entities. However in some contexts the entities are ordered or
non atomic or there are multiple levels of the context (hierarchical context) or the con-
text dimension is continuous. Classically all of these context dimensions are transformed
in a way to be conform with the needs of factorization, but this results in information
loss. My preliminary research in this area [28] demonstrates that better modeling of
these dimensions results in increased recommendation accuracy. However my work in
this area only scratched the surface and there is still a lot to be discovered.
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Finally, the wider area of my work is integrating other information into latent feature
based recommendation algorithms be it through using context, item metadata, session
information, etc. These information sources provide well structured data that does not
require huge amounts of preprocessing to use. However it would be more interesting
to include other information in the recommendation algorithms, such as images (of
products), low level audio features for music recommendation, video frames for video
recommendation or unstructured textual data (e.g. product descriptions). With the
recent advancements in the field of neural networks and deep learning this seems to be
possible to do in the next few years (at least in the lab). My preliminary research in
this area shows great potential.
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[67] G. Takács, I. Pilászy, and D. Tikk. Applications of the conjugate gradient method
for implicit feedback collaborative filtering. In RecSys’11: ACM Conf. on Recom-
mender Systems, pages 297–300, 2011.
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