
Initializing Matrix Factorization Methods on Implicit

Feedback Databases1

Balázs Hidasi

(Gravity R&D, Budapest, Hungary

Budapest University of Technology and Economics, Budapest, Hungary

balazs.hidasi@gravityrd.com)

Domonkos Tikk

(Gravity R&D, Budapest, Hungary

domonkos.tikk@gravityrd.com)

Abstract: The implicit feedback based recommendation problem—when only the user
history is available but there are no ratings—is a much harder task than the explicit
feedback based recommendation problem, due to the inherent uncertainty of the inter-
pretation of such user feedbacks. Recently, implicit feedback problem is being received
more attention, as application oriented research gets more attractive within the field.
This paper focuses on a common matrix factorization method for the implicit prob-
lem and investigates if recommendation performance can be improved by appropriate
initialization of the feature vectors before training. We present a general initialization
framework that preserves the similarity between entities (users/items) when creating
the initial feature vectors, where similarity is defined using e.g. context or metadata in-
formation. We demonstrate how the proposed initialization framework can be coupled
with MF algorithms. We experiment with various similarity functions, different context
and metadata based similarity concepts. The evaluation is performed on two implicit
variants of the MovieLens 10M dataset and four real life implicit databases. We show
that the initialization significantly improves the performance of the MF algorithms by
most ranking measures.

Key Words: Recommender systems, Implicit feedback, Initialization, Similarity, Con-
textual information

Category: I.2.6

1 Introduction

Recommender systems identify specific contents that match users’ personal in-

terests within huge content collections. The relevance of an item (the unit of

content) with respect to a user is predicted by recommender algorithms; items

with the highest prediction scores are displayed to the user.

A typical classification [Herlocker et al., 2004] divides recommender algo-

rithms into two main approaches: the content based filtering (CBF) and the

1 This is an extended version of the paper published at the CARR 2012 Workshop in
Lisbon, Portugal. Here we propose Sim2Factor method, a sophisticated variant of the
original SimFactor method, perform experiments with several similarity functions on
more benchmark datasets.

collaborative filtering (CF). Content based filtering algorithms use user meta-

data (e.g. demographic data) and item metadata (e.g. author, genre, etc.) and

try to predict the preference of the user based on these attributes. In contrast,

collaborative filtering methods do not use metadata, but only data of user–item

interactions. Depending on the nature of the interactions, algorithms can also

be classified into explicit and implicit feedback based methods. In the former

case, users provide explicit information on their item preferences, typically in

form of user ratings. In the latter case, user preferences is captured seamlessly

via user activity. Implicit feedback algorithms use user interactions like viewing

and purchasing retrieved e.g. from website usage logs. CF algorithms proved to

be more accurate than CBF methods, if sufficient preference data is available;

for a quantification of sufficiency, see e.g. [Pilászy and Tikk, 2009]. If this does

not hold, the so-called cold-start problem occurs.

In the last few years, latent factor based CF methods became popular,

because they were found to be much more accurate in the Netflix Prize, a

community contest launched in late 2006 that provided for a long term the

largest explicit benchmark dataset (100M ratings) [Bennett and Lanning, 2007].

Latent factor methods build generalized models that intend to capture user

preference. These algorithms represent each user and item as a feature vec-

tor and the rating of user u for item i is predicted as the scalar product of

these vectors. Different matrix factorization (MF) methods are used to com-

pute these vectors by approximating the partially known rating matrix us-

ing alternating least squares (ALS) [Bell and Koren, 2007], gradient descent

method [Takács et al., 2007], coordinate descent method [Pilászy et al., 2010],

conjugate gradient method [Takács et al., 2011], singular value decomposition

[Koren, 2008], or a probabilistic framework [Salakhutdinov and Mnih, 2008].

CF methods are able to provide accurate recommendations if enough feed-

back is available. In a few application areas, such as movie rental, travel appli-

cations, video streaming, users are motivated to provide ratings to get better

service. In general, however, users of online e-commerce shops or services do not

tend to provide ratings on items even if such an option is available, because

(1) at the purchase they have no information on their satisfaction rate (2) they

are not motivated to return later to the system to do so. In such cases, user

preferences can only be inferred by interpreting user actions (also called events).

For instance, a recommender system may consider the navigation to a particular

product page as an implicit sign of preference for the item shown on that page

[Ricci et al., 2011]. The user history specific to items are thus considered as im-

plicit feedback on user taste. Note that the interpretation of implicit feedback

data can be somewhat speculative as such data may not necessarily reflect user

satisfaction. For instance, a purchased item could be disappointing for the user,

so it might not mean a positive feedback. We can neither interpret missing navi-

gational or purchase information as negative feedback, that is, such information

is not available. Uncertainty of user feedback interpretation makes the implicit

feedback based preference modeling a challenging problem.

The implicit alternating least squares (iALS) method [Hu et al., 2008] is con-

sidered the seminal work for implicit feedback methods, which cast the problem

to a latent factor model and keeps its computational efficiency given implicit user

feedback using a proper rewriting of the objective function (see Section Related

work). Recently, implicit feedback problems attracted more attention, see e.g.

[Jahrer and Töscher, 2012, Shi et al., 2012, Takács and Tikk, 2012].

In this paper we examine the importance of the initialization of the iALS

algorithm. We show that if the usual random or zero initialization is replaced

by a similarity based one, the performance of the model improves significantly.

We propose a matrix factorization based initialization method which integrates

additional, possibly external information sources—we performed experiments

with context and metadata—to calculate the initial weights in the model. The

proposed initialization methodology can be combined with arbitrary implicit

feedback MF method (see e.g. [Pilászy et al., 2010, Takács et al., 2011]).

The main contributions of this papers are: (1) along a simple idea we propose

a general concept for the initialization of matrix factorization methods; (2) we

propose a novel method (SimFactor) that enables to improve the quality of

the initial vectors; (3) we run experiments with a large variety of initialization

settings using different types of additional information sources on MovieLens

10M, TV1, TV2, LastFM and on the Grocery datasets.

The rest of the paper is organized as follows. Related work describes the iALS

algorithm and presents currently used initialization approaches. The concept of

our initialization methods is described in Method. Here we also describe the Sim-

Factor algorithm that can approximate the similarities between entities (users

or items) efficiently using feature vectors. In Results we present the results of

our experiments with different initialization methods. Finally Conclusion sums

up this work.

2 Related work

We first present the iALS algorithm [Hu et al., 2008] that is the baseline algo-

rithm in our experiments. We will use the following notation in this work: N is

number of users, M is number of items, K denotes the number of features, R is

rating matrix, P and Q are user and item feature matrices.

The implicit task is solved in iALS by weighted matrix factorization. Instead

of the R matrix, an R(p) (preference) matrix is constructed in a way that the

(u, i) element of the matrix is 1 only if user u has at least one event on item i,

otherwise 0. It is important to note that all elements of R(p) are given, while the

R matrix of the explicit problem is only partially observed. A W weight matrix

is also created: if the (u, i) element of R(p) is 0 then the (u, i) element of W is 1,

otherwise it is greater than 1. The specific value can be computed based on the

number and type of events between user u and item i. The weighting reflects the

uncertainty of the interpretation of implicit feedback data: the presence of an

event (e.g. buy) provides more reliable information on the user preference than

its absence. In other words, we can be more confident in our assumption (buy =

like) in case of positive implicit feedbacks. We model this by assigning (much)

greater weight to positive implicit feedbacks than to negative ones.

Explicit feedback algorithms scale linearly with the number of observed rat-

ings in the matrix, and the density of the matrix is usually below 1%. However,

in the implicit case all elements of R(p) are given, therefore the computational

complexity of such algorithms is O(N ×M). Given the above density, it means

that the naive computation is several orders of magnitude slower compared to

the explicit case.

In [Hu et al., 2008], a proper rewriting of the objective function for ALS

learning is proposed to brake down the computational time. ALS approximates

the matrix R as the product of two lower rank matrices, R ≈ PQ, and performs

a series of weighted linear regressions. First, matrices P and Q are initialized

with random values. Then we fix matrix Q and compute each column of matrix

P using weighted linear regression (minimizing (R
(p)
u,• − (P•,u)

TQ)W (u)(R
(p)
u,• −

(P•,u)
TQ)T , where W (u) is a M ×M diagonal matrix and W

(u)
i,i = Wu,i). Then,

matrix P is fixed and the columns of Q are computed analogously.

The bottleneck in computing a column of P comes from the computation

of the QW (u)QT that is naively done in O(K2M). However, QW (u)QT can be

rewritten as QQT +Q(W (u)− I)QT (I is the identity matrix), from which QQT

can be precalculated. Because (W (u) − I) has only a few non-zero elements, the

cost of computing Q(W (u) − I)QT is only O(K2nu) where nu is the number of

non-zero elements in the uth row of R(p). Hence, the total cost (all N column)

of the computation of P is proportional with the number of positive implicit

feedback instead of the number of all entries in the rating matrix.

The importance of proper initialization was recognized for some matrix fac-

torization algorithms like the Nonnegative Matrix Factorization (NMF). It was

shown in [Smilde et al., 2004] that a good initialization can improve the speed

and accuracy of the algorithms, as it can produce faster convergence to an

improved local minimum. The rich literature of NMF initialization includes

centroid methods [Albright et al., 2006], spherical k-means clustering methods

[Wild et al., 2004, Dhillon and Modha, 2000] that provides low rank represen-

tation, SVD [Boutsidis and Gallopoulos, 2008] and sum of randomly selected

feature vectors [Albright et al., 2006]. Commonly, these methods use the same

data for initialization and for training the NMF.

In CF algorithms, feature weights are typically initialized with small random

weights [Rendle and Schmidt-Thieme, 2008, Takács et al., 2009]. Certain works

report on some parameterized randomization, drawing the random numbers from

a normal distribution [Thai-Nghe et al., 2012], or defining adjustable lower and

upper bounds separately for the item and user weights [Takács et al., 2009]. To

the best of our knowledge, more sophisticated initialization approaches, using

external data sources have not been proposed so far.

3 Method

Most of the MF methods are iterative algorithms that are started from a ran-

dom point: the item and user feature matrices are initialized randomly. After

some iterations these methods converge to a local optimum that depends on the

starting point. Our hypothesis is that an appropriate initialization of feature

vectors yields that MF methods will produce more accurate feature vectors and

therefore give more accurate predictions.

When investigating the feature vectors of accurate MF models, one can ob-

serve that similar items (e.g. items belonging to the same product category, or

episodes of a movie series) have similar item feature vectors. This suggest that

similarity-based initialization of feature vectors may result in more appropri-

ate models. The calculation of the initial item and user feature vectors should

obviously be aligned with the learning algorithm applied. To do this, first we

have to define the similarity between entities (users or items), which depends

on the similarity function and on the available item, user or transactional data.

In this paper, we experiment with four similarity functions: cosine, scalar prod-

uct, correlation and weighted correlation. The following data will be used in our

experiments to compute similarity:

– Item metadata vectors: let us consider an indexed set of metadata tags, which

contains all the possible tags that occur in item metadata (can be textual

or categorical). The item metadata vector contains a non-zero value in the

ith position if the ith tag occurs in item’s metadata. One can apply various

weighting schemes (e.g.: tfidf) to determine the elements of the vectors.

– User/Item event vectors: a user event vector of M length indicates with

non-zero values for which item the user has at least one event (analog for

items).

– User/Item context state vectors: let us define the set of context states (C)

as the possible combination of values of context variable. Here we consider

only categorical context variables with finite range. For instance if we take

seasonality as context, and a season is a week and time bands are days, then

we have 7 context states. When more than one context variable is used then

the context states are the Descartes-product of individual context values.

I.e. if additionally we store in another context variable if the purchase was

made online or offline, then we have 14 context states. Then the ith element

in the user context state vector is non-zero if the user has at least one event

in the ith context state (analog for items).

– User/Item context-event vectors: the user context-event vectors have length

C ·M ; each coordinate represents whether user has events on the given item

in the given context state (analog for items).

Remark that most of these vectors are typically very sparse, except context

state vectors with few context variables. Note that in each of the above cases,

one has several choices in creating the item/user description vectors from the

raw data: vectors may be binary, may contain the frequency, or one may apply

normalization or a weighting scheme.

We assemble a matrix, D, from the appropriate input vectors (row-wise),

which is referred to as the description of the items (DI) or users (DU). For

this we select an arbitrary but single data source from the above options; e.g.,

we use the item context state data vectors to form D. In order to make use of

the description as initial weights in a matrix factorization method, one should

compress them to be compliant with the feature size of the MF model. This can

be performed by any dimension reduction techniques like PCA [Jolliffe, 1986],

matrix factorization, auto-associative MLP [Kramer, 1991], etc. These methods

minimize the information loss at the compression and simultaneously perform

noise reduction.

In this paper we use two methods for compression. The first is a simple matrix

factorization, the weighted ALS, that minimizes the weighted squared error of

the predictions by fixing one of the feature matrices and computing the rows of

the other by using weighted linear regression. When factorizing item description,

we only keep the item feature matrix after the factorization process (analog for

user description), which is then readily used as initial feature vectors in the iALS

algorithm.

Our starting hypothesis is that description vectors characterize well the sim-

ilarities between entities. Therefore the relation of similarities (e.g. ratios, or-

der, etc.) between original description vectors should be carried over to the

compressed description vectors. Next we introduce the SimFactor compression

method that better preserves the relation between the original similarities than

ALS.

4 Method

4.1 SimFactor algorithm

As noted above, standard dimension reduction techniques may distort the sys-

tem of similarities between the entities. One could design a method that keeps

this property by starting from the similarity matrix of the users/items. The

problem with such an approach is that it requires the precomputation of the

entire similarity matrix, which is computationally very inefficient. Further, this

solution does not scale well, because the matrix has to be stored in memory

for the sake of efficient computation. According to our test, even when sparse

data structures are used for storing similarities, the calculation of the similarity

matrix takes a considerable amount of time, when N or M is large.

SimFactor is a simple algorithm that compresses the description of the items

while preserves the relations between the original similarities as much as possible.

This method only works for similarity metrics that can be computed via the

scalar product of two (transformed) vectors. The most commonly used metrics

in recommendation systems like cosine similarity, adjusted cosine similarity or

Pearson correlation [Snedecor and Cochran, 1980] can be computed in this way.

As for cosine similarity, one needs to ℓ2-normalize the input vectors then their

scalar product will be the same as the cosine similarity between the original

vectors. The pseudocode of SimFactor is described in Algorithm 1 (see also

Figure 1).

Algorithm 1 SimFactor

Input: D matrix that contains the item or the user description

Output: F matrix that contains the feature vectors of the items or users

procedure SimFactor(D)

1: D′ ← Transform(D)

2: < X, Y >← FactorizeMatrix(D′)

3: Z ← Y TY

4: < U,Λ >← EigenDecomposition(Z)

5: F ← matrix of Nentities ×Nentities size

6: for i = 1, . . . , Nentities do

7: Fi =
√

Λi,iXiU

8: end for

9: return F

end procedure

SimFactor starts with the appropriate transformation of the description ma-

trix (line 1; e.g. ℓ2-normalization when using cosine similarity). Next in line 2, a

Figure 1: Concept of the matrix transformations in SimFactor

matrix factorization is applied on the description, but in contrast to ALS, both

low rank matrices are kept. For the matrix factorization, arbitrary MF method

can be used. Here, we applied weighted ALS.

The steps performed between lines 3 and 8 are also depicted on Figure 1.

The matrix of similarities (S) is the product of the transformed description ma-

trix and its transpose (S = D′D′T), while the factor matrices (output of the MF

method in line 2) approximate the transformed description matrix (D′ ≈ XY T).

Therefore the similarity matrix can be approximated by S ≈ XY TY XT , where

Y TY is a K ×K symmetric (non-singular) matrix, thus its eigen-decomposition

always exists in the following form: Y TY = UΛUT . U and Λ are K × K ma-

trices. U contains the eigenvectors, Λ is singular and has the eigenvalues in its

diagonal. Λ =
√
Λ ·
√
Λ, where

√
Λ is also diagonal and contains the square

roots of the eigenvalues. Now we can approximate the similarity matrix as:

S ≈ XU
√
Λ
√
ΛUTXT . Introducing the Nentities ×K matrix F = XU

√
Λ, this

can be rewritten as S ≈ FFT .

In F , every row is a feature vector for an entity and the scalar product of the

ith and jth rows approximates the similarity between the corresponding entities.

This way SimFactor produces low-rank feature vectors that try to preserve the

original similarity values. We can use these feature vectors as the initial features

in the iALS algorithm.

4.2 Similarity-based similarities – Sim2Factor

One can also define the similarity between items based on how similar they are to

other items. Given the similarity matrix of the items, similarity measures can be

calculated on its rows and these values can be used as item similarity values. This

approach can sometimes seize actual similarities between items more precisely,

because even if the original similarity values are inaccurate, the system of those

values is often more consistent.

As we noted before, the computation of the similarity matrix is often not

practical or impossible due to time and memory limitations. Fortunately the

SimFactor algorithm can be modified in a way that enables us to approximate

the similarity based similarity values without the computation of the similarity

matrix. This modification is coined the Sim2Factor. The computational com-

plexity of SimFactor and Sim2Factor are the same. Algorithm 2 describes the

method.

Sim2Factor takes description matrixD as an input like SimFactor. The initial

steps are the same: first D is transformed in a way that the scalar product of

its rows will result in the desired similarity value. In the second step (line 2)

an arbitrary matrix factorization is performed. The resulting factor matrices are

transformed into the initial feature vectors (F) between lines 3–10. The key of

the algorithm is that the similarity based similarity matrix can be calculated as

S′ = SST = SS = DDTDDT (S is symmetric). By approximating D ≈ XY T

we have S′ ≈ XY TY XTXY TY XT . Introducing Z = Y TY (K × K) that can

be computed efficiently we get S′ ≈ XZXTXZXT . Using Z ′ = ZXT we can

write S′ ≈ XZ ′(Z ′)TXT = XZ ′′XT (Z ′′ is symmetric). Then the symmetric

K ×K sized Z ′′ is decomposed into product of two K ×K sized matrices in the

Algorithm 2 SimFactor

Input: D matrix that contains the item or the user description

Output: F matrix that contains the feature vectors of the items or users

procedure SimFactor(D)

1: D′ ← Transform(D)

2: < X, Y >← FactorizeMatrix(D′)

3: Z ← Y TY

4: Z ′ ← ZXT

5: Z ′′ ← Z ′(Z ′)T = (ZXT)(XZ)

6: < U,Λ >← EigenDecomposition(Z ′′)

7: F ← matrix of Nentities ×Nentities size

8: for i = 1, . . . , Nentities do

9: Fi =
√

Λi,iXiU

10: end for

11: return F

end procedure

same way as in SimFactor (Z ′′ = (U
√
Λ)(U

√
Λ)T). The initial feature matrix is

F = X(U
√
Λ). The steps of the transformation is also shown on Figure 2.

We note that unlike SimFactor, Sim2Factor does not allow us to use an

arbitrary similarity metric between the rows of S. The values of S′ will always

be the scalar products of the rows of S. This is because the description matrix

can not be modified efficiently to force the usage of other metrics in S′. However,

with the modification of the description matrix, different similarity metrics can

be used to approximate S.

4.3 Similarity metrics

As we mentioned earlier we can use different similarity metrics by transform-

ing the description matrix D. Here we introduce four different metrics and the

required transformations on D.

1. Scalar product: Scalar product of the rows of the description matrix. No

transformation is required on D.

2. Cosine similarity: Cosine similarity between vectors. The rows of D must

be ℓ2-normalized.

3. Correlation: We found that the correlation values between description vec-

tors are often better at describing similarities between entities. In order to

Figure 2: Concept of the matrix transformations in Sim2Factor

use this metric we must use the following transformation:

D′

i,j =

(

Di,j −
∑

M

k=1
Di,k

M

)

√

∑M

k=1 D
2
i,k −

(
∑

M

k=1
Di,k

)

2

M

.

This transformation yields a fully specified D′ matrix, where the majority of

the elements in each row is the same, but their value differ in different rows.

Therefore D′ can be efficiently stored. The matrix factorization method used

in the initialization must also handle the above property of the similarity

matrix efficiently. The weighted ALS fulfills this condition.

4. Binarized correlation: Correlation matrices can be ill-conditioned e.g.

when the values of different rows of the description matrix are from dif-

ferent scale. In such case one may opt for the correlation of the binarized

description vectors. For this, D should be first binarized and then the above

transformation applied.

4.4 Composite initialization

Several possible description matrices were mentioned in Section 3 using different

information sources. It is possible that by combining these information, higher

accuracy can be achieved. There are several ways to combine them. Our first

method puts the description matrices one after another, so the description vector

of an item is the concatenation of the description vectors (D = (D1|D2| . . . |Dn),

here | denotes the concatenation). The method requires matrices to have the

same row size that is achieved by imputing rows with zeroes into smaller ma-

trices. Weighting can also be used: D = (w1D1|w2D2| . . . |wnDn) The descrip-

tion matrix created in this manner has many columns and might be hard to

factorize precisely. Our second approach defines the initial feature matrix as a

weighted combination of the feature matrices created using different descriptions:

F = w1F1 + w2F2 + . . .+ wnFn. The size of all Fi should be the same.

4.5 Computational cost

Each of the presented initialization methods start with the factorization of the

item–descriptor matrix. Since the zeroes in this matrix should be taken into ac-

count to get a good approximation of the similarities, using implicit ALS is a

natural choice for the factorization algorithm. The cost of this initial factoriza-

tion is O(K3(ND+M)+K2D+) where ND is the number of possible descriptors

(e.g.: number of metadata, number of context-states, etc) and D+ is the number

of non-zero values in the descriptor matrix D.

The complexity of SimFactor—in addition to the initial matrix factorization—

is O(K2N+K3+K2M), where the terms correspond to the calculation of Y TY ,

finding the eigen-decomposition, and calculating F = XU
√
Λ, respectively. The

cost of Sim2Factor scales similarly to SimFactors (the only difference is in the

constant multiplier). This O(K2N + K3 + K2M) cost of the transformation

steps is negligible compared to the O(K3(ND +M) +K2D+) cost of the initial

matrix factorization. Therefore the bottleneck of the method is the factoriza-

tion of the description matrix. If ND is the same order of magnitude as N

then the cost of the initialization is roughly the same as that of the factoriza-

tion of the user–item matrix therefore the total running time doubles. This is

comparable when training the standard model without initialization but with

more factors, but without the advantages initialization. We also note that in

practice the running time of the implicit ALS is quite reasonable for low fac-

tor models and it can be further enhanced by approximating the ALS algorithm

[Pilászy et al., 2010, Takács et al., 2011]. Note that these enhancements can also

be applied to the factorization of the description matrix.

5 Results

We used five data sets for the experimentation. In all cases, time-based train–

test splits were used. MovieLens 10M [Resnick et al., 1994] was transformed into

implicit feedback data sets (1) keeping only the 5 star ratings and (2) keeping

ratings with values 4.5 and 5 as positive feedbacks. We used the 7 days for

testing (from 01/12/2008) and the earlier events for training. The TV1 and

TV2 data sets are VoD consumption data [Cremonesi and Turrin, 2009]. Here

we use the last week and the last day, respectively, for testing. The LastFM 1K

[Celma, 2010] data set contains music listening data of ∼1 000 users on songs

of ∼170 000 artists (artists are considered items). The training set contains all

events until 28/04/2009. Grocery data set contains purchase events of an online

store. The number of events is around 6.24 million targeted on 17,000 items (of

them 14,000 has at least one event). The last month of 5 years’ data was used

for testing.

We used various data sources when creating the description matrix (see de-

tails in Method). For context, we chose the time stamp of the content consump-

tion, which is available in almost every data set. Based on this, we determine

the notion of seasonality, the periodicity of user behavior patterns observed in

the data; this may vary for different domains. Within a season we do not expect

repetitions in the aggregated behavior of users, but we expect that at the same

time offset in different seasons, the aggregated behavior of the users are similar.

For example it is reasonable to set the season length to be 1 day for video-on-

demand (VoD) consumption, however, for shopping data 1 week or 1 month is

a more reasonable choice.

Having the length of the season determined, we need to create time bands

(bins) in the seasons. These time bands are the possible context-states and cor-

respond to time interval of equal or varying length. The time context of an event

is the time band in which it happened. We used different seasonality and time

band lengths and kept only the best results.

Not all description matrices were used for every dataset. For example suffi-

cient metadata is only available for the Grocery. We also found that context-state

and context-event descriptors often work similarly therefore we used the latter

only for TV1 and Grocery.

In the first experiment we compared weighted ALS and SimFactor to char-

acterize their similarity preserving capability. We drew randomly 2 times 10 000

Table 1: Accuracy of the similarity prediction

Database Input data Non-zero Method RMSE RMSE Order
ratio in D improvement match

Grocery

Item
0.09%

ALS 0.2683
85.51%

67.60%
metadata SimFactor 0.0389 85.38%

Item
22.81%

ALS 0.4923
96.09%

92.97%
context-state SimFactor 0.0192 98.29%

Item
0.01%

ALS 0.0332
23.47%

63.24%
context-event SimFactor 0.0254 61.30%

User
21.97%

ALS 0.3363
99.03%

89.53%
context-state SimFactor 0.0033 99.92%

User
0.04%

ALS 0.0425
49.34%

66.70%
context-event SimFactor 0.0215 74.17%

TV1

Item
66.10%

ALS 0.5056
97.16%

94.32%
context-state SimFactor 0.0144 97.49%

Item
0.01%

ALS 0.0602
0.00%

61.57%
context-event SimFactor 0.0602 61.59%

User
16.29%

ALS 0.3541
96.78%

87.30%
context-state SimFactor 0.0114 99.54%

User
0.04%

ALS 0.1879
20.82%

57.94%
context-event SimFactor 0.1488 57.51%

TV2

Item
42.02%

ALS 0.4426
94.78%

94.97%
context-state SimFactor 0.0231 97.84%

User
5.08%

ALS 0.2669
48.15%

80.00%
context-state SimFactor 0.1384 80.78%

MovieLens (5)

Item
39.08%

ALS 0.3166
86.59%

90.40%
context-state SimFactor 0.0425 94.26%

User
13.53%

ALS 0.3830
99.78%

85.06%
context-state SimFactor 0.0009 100.00%

MovieLens (4.5)

Item
47.05%

ALS 0.3380
88.02%

91.62%
context-state SimFactor 0.0405 95.04%

User
11.74%

ALS 0.3316
75.76%

83.61%
context-state SimFactor 0.0804 95.44%

LastFM

Item
25.87%

ALS 0.2892
86.87%

84.66%
context-state SimFactor 0.0380 96.52%

User
79.69%

ALS 0.5214
97.61%

83.07%
context-state SimFactor 0.0125 98.75%

entity pairs, calculated the original and the approximated similarity values and

counted when the later similarity pairs matched their original order. We also

measured the RMSE (root mean square error) of the similarity value prediction.

The results in Table 1 show that SimFactor was more accurate than weighted

ALS in every experiment. The improvement in RMSE is usually over 80% ex-

cept when the description matrix is very sparse. In addition to better accuracy,

SimFactor also preserves the original relations of the similarities better than the

weighted ALS. One can observe that the results depend greatly on the descrip-

tion matrix.

We used the following ranking measures to evaluate recommendation lists

with 10, 20 and 50 cutoffs: recall, MAP (mean average precision), NDCG (nor-

malized discounted cumulative gain) and MRR (mean reciprocal rank). We used

low-factor models as they are of practical use. As baseline, we ran several exper-

iments with different random initializations and chose the best result. In other

words the baseline is the vanilla implicit ALS. We used weighted ALS, SimFac-

tor and Sim2Factor for initialization (the latter two apply weighted ALS as their

first step) to create the initial feature. Note that since iALS is an alternating

method that discards the results of previous computations when calculating the

feature vectors we can not initialize both item and user features at once as one

of them will be discarded in the first step. We ran multiple experiments for each

input data type for the initialization and kept only the best for each input data

type.

Table 2 and Table 3 summarize the results of our experiments: the top5 ini-

tialization methods for each dataset by recall@50 and MAP@50 are shown. Other

metrics produce similar results (not shown here). One can observe that Sim-

Factor and Sim2Factor methods clearly outperform the standard factorization

based initialization, as most of the top performing initializations are achieved

with those methods. For a given dataset, the top5 is typically dominated by sim-

ilar initialization methods. As for the similarity metric, correlation and binarized

correlation is often more efficient than cosine similarity.

Figure 3 shows the improvement achieved in recall by the top5 methods on

each dataset with different cutoffs (10, 20 and 50). The improvement over the

baseline is greater at shorter list, therefore a proper initialization can be better

exploited with at the practically more important case.

We point out that on Grocery top the performing methods with all evaluation

metrics use context for initialization (opposed to metadata). This suggest that

context, like seasonality, can efficiently discriminate between entities, and this

can be exploited in weight initialization. Users have routines and people with

similar routines are similar and might have similar taste. Similarly, different item

types are typically consumed in different time bands; for example adult programs

mostly viewed late night. The distribution of the events for an entity in the time

bands appears to be an efficient descriptor.

We also experimented on Grocery with composite initialization methods (see

Section 4.4) using the context-state and metadata description matrices. When

using the concatenation of description matrices, none of the evaluation metric

could be improved over the better initialization. On the other hand, using the

Table 2: Recall@50 values for top5 methods per dataset

Dataset Description Similarity Algorithm Value Improvement
function over baseline

Grocery

User context-state Cos. Sim. MF 0.1612 8.40%
User context-state Correlation MF 0.1611 8.33%
User context-state Correlation SimFactor 0.1604 7.85%
User context-state Cos. Sim. SimFactor 0.1602 7.74%
User context-state Bin. Corr. MF 0.1601 7.63%
Random initialization (baseline) 0.1458 N/A

TV1

User context-event Bin. Corr. MF 0.2924 7.69%
User context-event Correlation MF 0.2924 7.69%
User context-event Cos. Sim. Sim2Factor 0.2924 7.69%
User context-event Bin. Corr. Sim2Factor 0.2921 7.57%
User context-event Correlation Sim2Factor 0.2921 7.57%
Random initialization (baseline) 0.2716 N/A

TV2

User context-state Cos. Sim. MF 0.4223 3.73%
User context-state Cos. Sim. SimFactor 0.4210 3.42%
User context-state Scalar Prod. SimFactor 0.4210 3.42%
User context-state Correlation MF 0.4209 3.41%
User context-state Bin. Corr. MF 0.4205 3.29%
Random initialization (baseline) 0.4071 N/A

ML (5)

User context-state Bin. Corr. SimFactor 0.1656 28.57%
User context-state Cos. Sim. SimFactor 0.1626 26.19%
User context-state Cos. Sim. MF 0.1626 26.19%
Item context-state Bin. Corr. Sim2Factor 0.1626 26.19%
User context-state Correlation SimFactor 0.1564 21.43%
Random initialization (baseline) 0.1288 N/A

ML (4.5)

User context-state Scalar Prod. Sim2Factor 0.1334 19.42%
User context-state Scalar Prod. SimFactor 0.1312 17.48%
User context-state Cos. Sim. SimFactor 0.1302 16.50%
User context-state Bin. Corr. Sim2Factor 0.1291 15.53%
User context-state Bin. Corr. SimFactor 0.1291 15.53%
Random initialization (baseline) 0.1117 N/A

LastFM

User context-state Bin. Corr. Sim2Factor 0.0950 113.43%
Item context-state Correlation Sim2Factor 0.0947 112.66%
Item context-state Cos. Sim. Sim2Factor 0.0941 111.25%
Item context-state Scalar Prod. Sim2Factor 0.0941 111.25%
Item context-state Scalar Prod. SimFactor 0.0932 109.34%
Random initialization (baseline) 0.0445 N/A

weighted sum of initial vectors provided better results than both initialization

methods. Figure 4 shows the improvement by method and metric.

Table 3: MAP@50 values for top5 methods per dataset

Dataset Description Similarity Algorithm Value Improvement
function over baseline

Grocery

User context-state Cos. Sim. SimFactor 0.1315 8.27%
User context-state Cos. Sim. MF 0.1295 6.65%
User context-state Correlation MF 0.1291 6.29%
User context-state Bin. Corr. MF 0.1283 5.60%
User context-state Correlation SimFactor 0.1275 4.94%
Random initialization (baseline) 0.1194 N/A

TV1

Item context-event Bin. Corr. Sim2Factor 0.0444 24.23%
Item context-event Correlation Sim2Factor 0.0444 24.23%
Item context-event Cos. Sim. Sim2Factor 0.0437 22.40%
Item context-event Scalar Prod. Sim2Factor 0.0437 22.40%
Item context-state Cos. Sim. MF 0.0433 21.36%
Random initialization (baseline) 0.0357 N/A

TV2

Item context-state Correlation SimFactor 0.0770 7.83%
Item context-state Cos. Sim. SimFactor 0.0770 7.82%
User context-state Bin. Corr. SimFactor 0.0764 6.88%
User context-state Scalar Prod. MF 0.0763 6.77%
User context-state Cos. Sim. SimFactor 0.0761 6.50%
Random initialization (baseline) 0.0714 N/A

ML (5)

User context-state Cos. Sim. Sim2Factor 0.0507 19.80%
User context-state Scalar Prod. Sim2Factor 0.0501 18.49%
User context-state Bin. Corr. Sim2Factor 0.0501 18.37%
User context-state Bin. Corr. MF 0.0497 17.50%
Item context-state Bin. Corr. SimFactor 0.0488 15.34%
Random initialization (baseline) 0.0423 N/A

ML (4.5)

User context-state Scalar Prod. SimFactor 0.0333 50.62%
Item context-state Scalar Prod. SimFactor 0.0329 48.81%
User context-state Bin. Corr. Sim2Factor 0.0320 44.70%
Item context-state Correlation Sim2Factor 0.0314 42.09%
Item context-state Scalar Prod. MF 0.0313 41.45%
Random initialization (baseline) 0.0221 N/A

LastFM

User context-state Bin. Corr. MF 0.1474 309.44%
User context-state Bin. Corr. Sim2Factor 0.1369 280.19%
Item context-state Correlation MF 0.1305 262.42%
Item context-state Scalar Prod. Sim2Factor 0.1299 260.74%
Item context-state Cos. Sim. MF 0.1278 255.06%
Random initialization (baseline) 0.0360 N/A

6 Conclusion

In this paper we proposed a general framework for similarity based initialization

of MF algorithms. Our hypothesis was that initializing item and user models

with weights that reflect the similarity between entities improves algorithm per-

formance when compared to a random initialization. This method also allows us

Figure 3: Recall improvement over the baseline at cutoffs 10, 20 and 50 for each

dataset. Each base color denotes a dataset, the three lines of similar color show

the maximal, the average and the minimal improvement by the top5 methods

for that dataset.

Figure 4: Improvement by the composite initialization (over the better of the

members) on short recommendation lists

to easily incorporate additional information like context or metadata information

into the MF framework.

We proposed the algorithm SimFactor that implements the general idea. We

found that SimFactor indeed preserves the original similarities and their relation

better than other MF methods. The SimFactor initialization has a negligible

computational cost when used with an arbitrary MF method. We also extended

SimFactor to use similarity based similarities.

The data source taken to compute similarity greatly affects the performance

gain observed with initialization. We found that the the largest improvement can

be achieved by using the contextual information (here we used seasonality). Con-

text separates the entities better than any other information we experimented

with. The similarity preserving property of the SimFactor can be a disadvantage

when the description matrix is too noisy, that is, when the description matrix

does not capture item or user similarities. We left for further research the inves-

tigation of the effect of alternative contexts, or how to handle continuous ranged

context dimensions such as, e.g., product price.

The usefulness of SimFactor-based initialization can be regarded as a trade-

off between training time and accuracy gain. Both quantities depend on the

description data that is application domain specific. Here context based descrip-

tion is again more advantageous than metadata based ones, because the size of

the context description vectors is smaller than with metadata. This promotes

context based initialization to be used in real-world recommender applications.

References

[Albright et al., 2006] Albright, R., Cox, J., Duling, D., Langville, A., and Meyer, C.
(2006). Algorithms, initializations, and convergence for the nonnegative matrix fac-
torization. Technical Report Math 81706, NC State University.

[Bell and Koren, 2007] Bell, R. M. and Koren, Y. (2007). Scalable collaborative filter-
ing with jointly derived neighborhood interpolation weights. In Proc of. ICDM-07:
IEEE Int. Conf. on Data Mining, pages 43–52, Omaha, Nebraska, USA.

[Bennett and Lanning, 2007] Bennett, J. and Lanning, S. (2007). The Netflix Prize.
In Proc. of KDD Cup Workshop at SIGKDD-07: ACM Int. Conf. on Knowledge
Discovery and Data Mining, pages 3–6, San Jose, CA, USA.

[Boutsidis and Gallopoulos, 2008] Boutsidis, C. and Gallopoulos, E. (2008). Svd based
initialization: A head start for nonnegative matrix factorization. Pattern Recognition,
41(4):1350–1362.

[Celma, 2010] Celma, O. (2010). Music Recommendation and Discovery in the Long
Tail. Springer.

[Cremonesi and Turrin, 2009] Cremonesi, P. and Turrin, R. (2009). Analysis of cold-
start recommendations in IPTV systems. In Proc. of RecSys-09: ACM Conf. on
Recommender Systems, pages 233–236, New York, NY, USA.

[Dhillon and Modha, 2000] Dhillon, I. S. and Modha, D. S. (2000). Concept decom-
positions for large sparse text data using clustering. Machine Learning, 42(1–2):143–
175.

[Herlocker et al., 2004] Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl,
J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Trans-
actions on Information Systems, 22(1):5–53.

[Hu et al., 2008] Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for
implicit feedback datasets. In Proc. of ICDM-08: IEEE Int. Conf. on Data Mining,
pages 263–272, Pisa, Italy.

[Jahrer and Töscher, 2012] Jahrer, M. and Töscher, A. (2012). Collaborative filtering
ensemble for ranking. JMLR Workshop and Conference Proceedings, 18:153–167.
Proceedings of KDD-Cup 2011 competition.

[Jolliffe, 1986] Jolliffe, I. (1986). Principal Component Analysis. Springer Verlag.

[Koren, 2008] Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In Proc. of SIGKDD-08: ACM Int. Conf. on Knowledge
Discovery and Data Mining, pages 426–434, Las Vegas, NV, USA.

[Kramer, 1991] Kramer, M. A. (1991). Nonlinear principal component analysis using
autoassociative neural networks. AIChE Journal, 37(2):233–243.

[Pilászy and Tikk, 2009] Pilászy, I. and Tikk, D. (2009). Recommending new movies:
Even a few ratings are more valuable than metadata. In Proc. of RecSys-09: ACM
Conf. on Recommender Systems, pages 93–100, New York, NY, USA.

[Pilászy et al., 2010] Pilászy, I., Zibriczky, D., and Tikk, D. (2010). Fast ALS-based
matrix factorization for explicit and implicit feedback datasets. In Proc. of RecSys-
10: ACM Conf. on Recommender Systems, pages 71–78, Barcelona, Spain.

[Rendle and Schmidt-Thieme, 2008] Rendle, S. and Schmidt-Thieme, L. (2008).
Online-updating regularized kernel matrix factorization models for large-scale rec-
ommender systems. In Proc. of RecSys-08: ACM Conf. on Recommender Systems,
pages 251–258, Lausanne, Switzerland.

[Resnick et al., 1994] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl,
J. (1994). Grouplens: an open architecture for collaborative filtering of netnews. In
Proc. of CSCW-94: ACM Conf. on Computer Supported Cooperative Work, pages
175–186, Chapel Hill, NC, USA.

[Ricci et al., 2011] Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to rec-
ommender systems handbook. In Ricci, F., Rokach, L., Shapira, B., and Kantor,
P. B., editors, Recommender Systems Handbook, Artificial Intelligence, pages 1–35.
Springer US.

[Salakhutdinov and Mnih, 2008] Salakhutdinov, R. and Mnih, A. (2008). Probabilistic
matrix factorization. In Platt, J. C., Koller, D., Singer, Y., and Roweis, S., editors,
Advances in Neural Information Processing Systems 20, pages 1257–1264. MIT Press,
Cambridge, MA, USA.

[Shi et al., 2012] Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., and
Hanjalic, A. (2012). CLiMF: learning to maximize reciprocal rank with collaborative
less-is-more filtering. In Proc. of RecSys-12: ACM Conf. on Recommender Systems,
pages 139–146, Dublin, Ireland.

[Smilde et al., 2004] Smilde, A., Bro, R., and Geladi, P. (2004). Multi-way Analysis.
Wiley, West Sussex, England.

[Snedecor and Cochran, 1980] Snedecor, G. W. and Cochran, W. G. (1980). Statistical
Methods. Iowa State University Press, 7th edition.

[Takács et al., 2007] Takács, G., Pilászy, I., Németh, B., and Tikk, D. (2007). Major
components of the Gravity recommendation system. SIGKDD Explor. Newsl., 9:80–
83.

[Takács et al., 2009] Takács, G., Pilászy, I., Németh, B., and Tikk, D. (2009). Scalable
collaborative filtering approaches for large recommender systems. Journal of Machine
Learning Research, 10:623–656.

[Takács et al., 2011] Takács, G., Pilászy, I., and Tikk, D. (2011). Applications of the
conjugate gradient method for implicit feedback collaborative filtering. In Proc. of
RecSys-11: ACM Conf. on Recommender Systems, pages 297–300, Chicago, IL, USA.

[Takács and Tikk, 2012] Takács, G. and Tikk, D. (2012). Alternating least squares for
personalized ranking. In Proc. of RecSys-12: ACM Conf. on Recommender Systems,
pages 83–90, Dublin, Ireland.

[Thai-Nghe et al., 2012] Thai-Nghe, N., Drumond, L., Horváth, T., Krohn-
Grimberghe, A., Nanopoulos, A., and Schmidt-Thieme, L. (2012). Factorization
techniques for predicting student performance. In Educational Recommender
Systems and Technologies: Practices and Challenges (ERSAT 2011), pages 1–25.
IGI Global.

[Wild et al., 2004] Wild, S. M., Curry, J. H., and Dougherty, A. (2004). Improving
non-negative matrix factorizations through structured initialization. Pattern Recog-
nition, 37(11):2217–2232.

