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Factorization models for context-aware
recommendations

Balázs Hidasi

Abstract—The field of implicit feedback based recommender
algorithms have gained increased interest in the last few years,
driven by the need of many practical applications where no ex-
plicit feedback is available. The main difficulty of this recommen-
dation task is the lack of information on the negative preferences
of the users that may lead to inaccurate recommendations and
scalability issues. In this paper, we adopt the use of context-
awareness to improve the accuracy of implicit models—a model
extension technique that was applied successfully for explicit
algorithms. We present a modified version of the iTALS algorithm
(coined iTALSx) that uses a different underlying factorization
model. We explore the key differences between these approaches
and conduct experiments on five data sets to experimentally
determine the advantages of the underlying models. We show
that iTALSx outperforms the other method on sparser data sets
and is able to model complex user–item relations with fewer
factors.

Index Terms—context-awareness, implicit feedback, model
comparison, recommender systems, tensor factorization.

I. INTRODUCTION

Recommender systems are information filtering tools that
help users in information overload to find interesting items.
For modeling user preferences, classical approaches either
use item metadata (content based filtering, CBF; [1]), or
user–item interactions (collaborative filtering, CF; [2]). CF
algorithms proved to be more accurate than CBF methods,
if sufficient interaction data (or events) is available [3]. CF
algorithms can be further divided into memory and model
based algorithms. An important subclass of the latter is the
factorization algorithms (e.g. matrix factorization).

Latent factor based CF methods gained popularity due to
their attractive accuracy and scalability [4]. They intend to
capture user preferences by uncovering latent features that
explain the observed user–item events (ratings). Models are
created by the factorization of the partially observed user–
item rating matrix, and the user preferences are approximated
by the scalar product of the user and item factors. Matrix
factorization (MF) methods may differ in the learning method
and the objective function. For learning, MF methods may
apply, e.g., alternating least squares (ALS; [5]), stochastic
gradient [6], or a probabilistic framework [7].

Depending on the nature of the user–item interactions,
recommendation problems can be classified into explicit and
implicit feedback based problems. In the former case, users
provide explicit information on their preferences, typically in
form of ratings. In the latter case, user preferences are captured
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seamlessly via user activity. Implicit feedback algorithms use
user interactions like viewing and purchasing retrieved e.g.
from website usage logs. Obviously, implicit feedback data
is less reliable because the presence of an action is only
an uncertain implication that the user likes the item and the
absence of an action rarely means negative preference.

The implicit problem is much more important in practical
applications than the explicit one, because most of the users
of online e-commerce shops or services do not tend to rate
items even if such an option is available[8], because (1) when
purchasing they have no information on their satisfaction rate
(2) they are not motivated to return later to the system to
do so. In such a case, user preferences can only be inferred
by interpreting user actions (also called events). For instance,
a recommender system may consider the navigation to a
particular item page as an implicit sign of preference for
the item [9]. The user history specific to items are thus
considered as implicit feedback on the user’s taste. Note that
the interpretation of implicit feedback data may not necessarily
reflect user preferences which makes the implicit feedback
based preference modeling a much harder task. For instance,
a purchased item could be disappointing for the user, so it
might not mean a positive feedback. The strength of the
events’ indication of preferences varies on a type by type
basis. E.g. purchasing an item is a stronger indicator than
looking at a product page (browsing). Missing navigational
or purchase information can not be interpreted as negative
feedback. The absence of the negative feedback forces us
to use the information stored in the “missing” events. Most
(explicit) algorithms iterate over the known ratings and use
gradient descent to minimize the error function. This is not
applicable in the implicit case as the number of known ratings
is equal to all possible ratings as we should use the “missing”
events as well. Although the explicit feedback problem is
much thoroughly studied research topic, in the last few years
implicit feedback algorithms have gained increased interest
thanks to its practical importance; see [8], [10], [11].

Classical collaborative filtering methods only consider direct
user–item interaction data to create the model. However, we
may have additional information related to items, users or
events, which are together termed contextual information.
Context can be, for instance, the time or location of recommen-
dation. Any additional information to the user–item interaction
can be considered as context. Here we assume that the context
dimensions are event contexts, meaning that their value is not
determined solely by the user or the item; rather it is bound
to the transaction itself. E.g. the time of the event is an event
context, while the genres of the item is not. Integrating context
into the recommender model improves the model capacity and
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increases accuracy, and became therefore a popular approach
for the explicit algorithms recently. We argue that implicit
algorithms can benefit even more from the context due to the
uncertainty of the user feedback.

Context-aware recommendation algorithms can be divided
into three groups [12]: (1) pre-filtering approaches partition
the training data according to the value of the context(s) and
train traditional (non context-aware) algorithms on said parti-
tions; (2) post-filtering approaches disregard the context during
training, but modify the list of recommendations according to
the actual context-state; (3) contextual modeling approaches
consider the context dimension(s) during the learning process.

In this paper, we use the contextual modeling approach.
More specifically we extend factorization methods with con-
text dimensions. To incorporate the context in factorization
methods, the underlying model needs to be modified. However
the model can be modified in several ways and each of these
implies a conceptually different view on the role of the context.
Building on our previous work, we present a variant of the
(context-aware) iTALS algorithm [13] – coined iTALSx1 –
that uses a different underlying model.

The rest of the paper is organized as follows. Section II
gives a brief overview on context-aware recommender sys-
tems. The iTALSx method is presented in Section III. The
key conceptual differences between iTALS and iTALSx are
highlighted in Section IV. The experimental comparison of
the two approaches (conducted on five implicit feedback data
sets) are described in Section V. Finally, Section VI concludes
this work.

A. Notation

We will use the following notation in the rest of this paper:
• A ◦B ◦ . . .: The Hadamard (elementwise) product of A,
B, . . . . The operands are of equal size, and the result’s
size is also the same. The element of the result at index
(i, j, k, . . .) is the product of the element of A, B, . . . at
index (i, j, k, . . .).

• Ai: The ith column of matrix A.
• Ai1,i2,...: The (i1, i2, . . .) element of tensor/matrix A.
• K: The number of features, the main parameter of the

factorization.
• D: The number of dimensions of the tensor.
• T : A D dimensional tensor that contains only zeroes and

ones (preference tensor).
• W : A tensor with the same size as T (weight/confidence

tensor).
• S<X>: The size of T in dimension X (e.g. < X >= U

(Users)).
• N+: The number of ratings (explicit case); non-zero

elements in tensor T (implicit case).
• U, I, C: A K × S<X> sized matrices. Its columns are

the feature vectors for the entities in the user/item/context
dimension.

• R: Training data that contains (u, i, c) triplets i.e. user–
item–contex-state combinations.

1ITALSx is cited in some of our works as it was described in a closed
(publicly non-available) technical report[14] earlier.

II. CONTEXT-AWARE RECOMMENDER SYSTEMS

Context-aware recommender systems (CARS) [15] emerged
as an important research topic in the last years. Recently, entire
workshops were devoted to this topic on major conferences
(CARS series started in 2009 [16], CAMRa in 2010 [17]).

As we discussed earlier, pre- and post-filtering approaches
use traditional recommender algorithms with some kind of
filtering or splitting to consider context during learning and/or
recommendation. On the other hand contextual modeling fo-
cuses on designing algorithms that incorporate context into the
model itself. Tensor factorization (TF) follows the contextual
modeling flavor of CARS, when contextual information (or
simply: context) is incorporated into the recommendation
model [12]. TF is a natural extension of matrix factorization
for more dimensions, although it is not straightforward how
to make it work efficiently.

Let we have a set of items, users and ratings (or events) and
assume that additional contexts are available on ratings (e.g.
the time of the rating). If we have NC different contexts we can
structure the ratings into a D = NC+2 dimensional tensor T .
The first dimension corresponds to users, the second to items
and the subsequent NC dimensions [3, . . . , NC+2] are devoted
to context. Note that in order to be able to use this approach,
every context dimension must consists of possible context-
states that are atomic and categorical values. In other words,
the value of a context variable comes from a finite set of atomic
values (these values are termed context-states). We want to
decompose tensor T into lower rank matrices and/or tensors
in a way that the reconstruction of the original tensor from
its decomposition approximates the original tensor sufficiently
well.

In [18] a sparse HOSVD method is presented that decom-
poses a D dimensional sparse tensor into D matrices and
a D dimensional tensor. The authors use gradient descent
on the known ratings to find the decomposition, and by
doing so the complexity of one iteration of their algorithm
scales linearly with the number of non-missing values in the
original tensor and cubically with the number of features
(K). Rendle et al proposed a tensor factorization method for
tag recommendation [19] that was later adapted to context-
aware recommendations [20]. Their model is similar to the
one we use to model the relation between users, items and
context states. For every entity in every dimension they use
two feature vectors and the preference of user u on tag t for
item i is approximated by the sum of three scalar products: (1)
first user feature vector with first tag vector, (2) second user
vector with second item vector and (3) first item vector with
second tag vector. The second scalar product can be omitted
during recommendations, since it has no effect on the ranking
of tags in a given user–item relation, however it can filter
noise during the training. The model is generalized to context-
aware recommendations by replacing tags by items and items
by context. They use gradient descent to minimize the loss
function.

Our method also approximates the preferences with the
sum of three scalar products, but there are major differences
from the previously presented method: (1) there is only one
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feature vector for each entity in our model; (2) our algorithm
is able to efficiently handle the implicit feedback case by using
computationally effective learning scheme; (3) we use ALS to
minimize the error.

The closest to our approach is our previously proposed
implicit context aware tensor model [13] that approximates
a given cell of the tensor as the sum of the elements in the
Hadamard product of three feature vectors (i.e. it uses a full
three-way model). iTALS and iTALSx uses the same loss
function and optimization procedure, but they use different
models and thus require different steps in the learning process.
We show how the model differences affect usability in section
V.

III. THE ITALSX ALGORITHM

In this section we present our context aware model and an
efficient ALS (Alternating Least Squares) based method for
training. ALS training fixes all but one feature matrices and
computes the columns on the non fixed one by solving a least
squares problem for each column.

The presented model uses one context dimension. Problems
with several context dimensions can be transformed to use
a single dimension by using the Descartes product of the
possible context-states of each dimension. Also, the model
can be extended to handle arbitrary number of dimensions, by
simply adding more dot products to it.
T is a tensor that contains zeroes and ones. The number

of ones in T is much lower than the number of zeroes. W
contains weights to each element of T . An element of W is
greater than 1 if the corresponding element if T is non-zero
and 1 otherwise. This approach assumes that the presence
of an event is positive preference with a high confidence
while its absence is negative preference with a very low
confidence. This approach is commonly used for handling
implicit feedback [8][13]. In our model we decompose T into
three low rank matrices (U , I and C) and approximate a given
element by a sum of three dot products. The vectors used in the
scalar products are the columns of the matrices corresponding
to the given item/user/context state. The following equation
describes the preference model:

T̂u,i,c = (Uu)
T
Ii + (Uu)

T
Cc + (Ii)

T
Cc (1)

During the training of the model we want to minimize the
following loss function (weighted RMSE):

L(P,Q,C) =

SU ,SI ,SC∑
u=1,i=1,c=1

Wu,i,c

(
Tu,i,c − T̂u,i,c

)2
(2)

If all but one matrix are fixed (say U and C), L is convex in the
non-fixed variables (elements of I in this case). The minimum
of L (in I) is reached where its derivative with respect to I is
zero. The columns of I can be computed separately because
the derivative of L (with respect to I) is linear in I . The

derivative for the ith column of I is as follows:

∂L

∂Ii
= −2

SU ,SC∑
u=1,c=1

Wu,i,cTu,i,c (Uu + Cc)︸ ︷︷ ︸
O

+

+2

SU ,SC∑
u=1,c=1

Wu,i,c (Uu + Cc) (Uu + Cc)
T

︸ ︷︷ ︸
I

Ii+

+2

SU ,SC∑
u=1,c=1

Wu,i,c(Cc)
TUu (Uu + Cc)︸ ︷︷ ︸

B

=

= −2O + 2IIi + 2B

(3)

O can be computed efficiently (see section III-A), but the
naive computation of I and B is expensive. Therefore these
expressions are further transformed by introducing W ′u,i,c =
Wu,i,c − 1:

I =

SU ,SC∑
u=1,c=1

W ′u,i,c (Uu + Cc) (Uu + Cc)
T

︸ ︷︷ ︸
I1

+

+

SU ,SC∑
u=1,c=1

(Uu + Cc) (Uu + Cc)
T

︸ ︷︷ ︸
I2

(4)

The sum in I1 contains at most N+ non-zero members,
because W ′u,i,c is zero if the corresponding element is T is
zero. Thus its computation is efficient. I2 is independent of i
(it is the same for each column of Q) thus can be precomputed.
However its naive computation is still expensive, therefore we
further transform I2 as follows:

I2 = SC

SU∑
u=1

Uu (Uu)
T

︸ ︷︷ ︸
M(U)

+SU

SC∑
c=1

Cc (Cc)
T

︸ ︷︷ ︸
M(C)

+

+

(
SC∑
c=1

Cc

)
︸ ︷︷ ︸
X (C)

(
SU∑
u=1

Uu

)T

︸ ︷︷ ︸
(X (U))T

+

(
SU∑
u=1

Uu

)
︸ ︷︷ ︸
X (U)

(
SC∑
c=1

Cc

)T

︸ ︷︷ ︸
(X (C))T

=

= SCM(U) + SUM(C) + X (C)(X (U))T + X (U)(X (C))T

(5)
The members (M(U), M(C), X (U), X (C)) in equation 7 can
be computed efficiently. Note that the recomputation ofM(U)

and X (U) is only necessary when U changes and therefore we
include the cost of recomputing these variables to the cost of
recomputing U . We can perform similar steps for B, separating
it into two parts, one of which can be rewritten using the
variables above. The decomposition is shown in the following
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equation:

B =

SU ,SC∑
u=1,c=1

W ′u,i,c(Cc)
TUu (Uu + Cc)︸ ︷︷ ︸

B1

+

+M(U)X (C) +M(C)X (U)

(6)

Now all we have to do in order compute the desired column
of I is to solve a K ×K system of linear equations:

Ii = (I2 + I1)−1 (O − (B2 + B1)) (7)

Bias and regularization can be easily added to the method,
thus they are omitted in this deduction for the sake of clearer
presentation.

Algorithm III.1 presents the pseudocode for training the
model, that is the straight translation of the deduction above.
The method is named iTALSx.

A. Complexity

The complexity of one epoch (i.e. computing each matrix
once) is O

(
K3(SU + SI + SC) +K2N+

)
, thus it scales

linearly with the number of non-zeros in the tensor and cubi-
cally with the number of factors. Since in practical problems
N+ � SU +SI +SC , the scaling of the method is practically
quadratical in K when small (10 . . . 400) K values are used
(also common in practice).2

The complexity of recomputing I (as in the deduction
above) is O(K3SI +K2N+). This complexity also contains
the recomputation of M(I) and X (I) that are needed later for
the computation of the other two matrices. The aforementioned
complexity consists of calculating

• (1) O for each column in equation (3) in O(KN+) time
as only N+

i elements of T are non-zeroes for ith item
(N+ =

∑M
i=1N

+
i );

• (2) I1 for each column in equation (4) in O(K2N+) time
as W ′u,i,c = (Wu,i,c − 1) is zero if the value of Tu,i,c is
zero;

• (3) I2 in equation (7) in O(K2) time from the precom-
puted values M(U), M(C), X (U), X (C);

• (4) B in equation (6) in O(KN++K2) time analogously
to the computation of I = I1 + I2;

• (5) solving the systems of equations for all columns in
O(SIK

3) time;
• (6) recomputing M(I) and X (I) based on the new I

matrix in O(SIK
2) time

IV. COMPARISON WITH ITALS

In earlier work we recently proposed a context aware tensor
model (coined iTALS) for the implicit feedback problem.
This model is a full three-way model that approximates the
elements in T with the sum of the elements in the Hadamard

2This can be reduced to a theoretically quadratic and practically linear
scaling by applying approximate least squares solvers like conjugate gradient
instead of the exact solver, like in [21].

Algorithm III.1 iTALSx algorithm
Input: T : S1 × S2 × S3 sized tensor of zeroes and ones; W :
S1×S2×S3 sized tensor containing the weights; K: number
of features; E: number of epochs; {λm}m=1,2,3: regularization
parameters
Output: {M (i)}m=1,2,3 K × Si sized matrices
Note: S1 = SU , S2 = SI , S3 = SC , M (1) = U , M (2) = I ,
M (3) = C
procedureITALSX(T,W,K,E)

1: for m = 1, . . . , 3 do
2: M (m) ← Random K × Sm sized matrix
3: M(m) ←

∑Sm

j=1M
(m)
j (M

(m)
j )T

4: X (m) ←
∑Sm

j=1M
(m)
j

5: end for
6: for e = 1, . . . , E do
7: for m = 1 . . . , 3 do
8: p← (m− 1)%3
9: n← (m+ 1)%3

10: I2 ← M(p)Sn + M(n)Sp + X (p)(X (n))T +
X (n)(X (p))T

11: B2 ←M(p)X (p) +M(n)X (p)

12: for i = 1..Sm do
13: I ← I2
14: O ← 0
15: B ← B2
16: for all {t|t = Tj1,j2,j3 , jm = i, t 6= 0} do
17: w ← corresponding value in W to t in T
18: v ←M (p) +M (n)

19: I ← I + wvvT

20: O ← O + wtv
21: B ← B + wM (p)(M (n))T v
22: end for
23: M

(m)
i ← (I + λmI)

−1 (O − B)
24: end for
25: M(m) ←

∑Sm

j=1M
(m)
j (M

(m)
j )T

26: X (m) ←
∑Sm

j=1M
(m)
j

27: end for
28: end for
29: return {M (m)}m=1...3

end procedure

products of three vectors. Mathematically the model of iTALS
[13] contains the iTALSx model as:

T̂ iTALS
u,i,c =1T (Uu ◦ Ii ◦ Cc)

3 · T̂ iTALS
u,i,c =1T (Uu ◦ Ii ◦ Cc) + 1T (Uu ◦ Ii ◦ Cc)+

+ 1T (Uu ◦ Ii ◦ Cc)

T̂ iTALSx
u,i,c =1T (Ii ◦ Cc) + 1T (Uu ◦ Cc) + 1T (Uu ◦ Ii)
T̂ iTALSx
u,i,c =1T (1 ◦ Ii ◦ Cc) + 1T (Uu ◦ 1 ◦ Cc)+

+ 1T (Uu ◦ Ii ◦ 1) ,
(8)

where ◦ denotes the Hadamard product of the argument
vectors.

It is more interesting to compare the models from the
recommendation aspect. The main goal of a collaborative
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Fig. 1. The time of one epoch (computing each feature matrix once) with iTALS and iTALSx using different number of features. (Measurements on the VoD
data set; only one core used.) Results for iALS are also depicted.

filtering algorithm is to learn the user–item relations (e.g.
which user likes which item). iTALS adds context to the model
and approximates the user–item relation in the 3 dimensional
space. It reweights the user–item relations by a context state
dependent vector, which becomes more accurate with more
factors [13]. On the other hand, iTALSx uses a composite
model and approximates the user–item relation by the sum of
approximations in user–item, user–context and item–context
sub-spaces, where the feature vectors in the sub-spaces are
constrained by requiring a single feature vector for each entity.
Consequently, the descriptive power of iTALS is larger, which
can be however only leveraged at a sufficiently fine resolution
of the feature space, requiring many factors. At low factor
models, the boundaries of different characteristics is blurred
by reweighting and the model becomes less precise. In such
cases, iTALSx is expected to be more accurate, since the sub-
space models can be learnt easier.

A. Complexity and training times

The complexity is O(N+K2 + (SU + SI + SC)K
3) for

both iTALS and iTALSx. Since in practice N+ � (SU +SI+
SC), each method scales with K2 when low-factor models are
used. However the training time of iTALSx is slightly higher,
because (a) iTALS does not require X (m) for its computations;
(b) the computations in iTALSx require a few extra operations
(see Figure 1).

Figure 1 also contains the training times for non-context-
aware (2D) iALS algorithm, that uses a similar method for
learning. The complexity of iALS is O(N+K2 + (SU +
SI)K

3). This means that the running times of iALS and the
context-aware methods differ only in a constant multiplier, that
is proportional to the number of matrices to be recomputed
(see Figure 1), but the time to compute one feature matrix is
virtually the same for these algorithms.

V. RESULTS

We used five data sets to evaluate our algorithm. Two of
them (Grocery and VoD) are proprietary data sets and contain

real-life implicit data. The other three data sets (LastFM [22],
TV1 and TV2 [23]) are publicly available, but might have been
transformed/cleaned prior release. The properties of the data
sets are summarized in Table I. The column “Multi” shows the
average multiplicity of user-item pairs in the training events.3

Data density is measured without context, with seasonality (-
S) and with sequentiality (-Q). The first event in the test data
is after the last event of the training data. The length of the
test period was selected to be at least one day, and depends on
the domain and the frequency of events. We used the artists
as items in LastFM.

The evaluation metric used here is recall@N. Recall is the
proportion of the number of recommended and relevant items
to the number of relevant items. Item i is considered relevant
for user u if the user has at least one event for that item in the
test set. The item is recommended at cut-off N if it belongs
to the topN of the recommendation list4. We chose cut-off 20
because the length of the recommendation list is limited as
users are exposed to a few recommended items at a time. The
evaluation is event based, meaning that if the user has multiple
events on an item in the test set then that item is considered
multiple times.

Recall@N suites the recommendation task really well from
a practical point of view. During a session the user is exposed
to some recommended items (e.g. a few on each page visited)
and the recommendation is successful if she interacts (e.g.
buys, watches) with these items. The items further down the
recommendation list are irrelevant, because they won’t be
shown to the user. 20 as cut-off is a fair estimation of the
items the user sees during a session (e.g. 4 pages visited,
5 recommendations per page). In most practical settings the
order of the topN items is irrelevant due to the placement of

3This value is 1.0 at two data sets: TV1 and TV2 due to possible filtering
of duplicate events.

4The recommendation list is generated by ordering the items for a user
(under the given context) by their predicted preference values in descending
order.
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TABLE I
MAIN PROPERTIES OF THE DATA SETS

Dataset Domain Training set Test set
#Users #Items #Events Density Density-S Density-Q Multi #Events Length

Grocery E-grocery 24947 16883 6238269 0.61% 0.15% 9.37E-5% 3.0279 56449 1 month
TV1 IPTV 70771 773 544947 1.02% 0.17% 1.63E-3% 1.0000 12296 1 week
TV2 IPTV 449684 3398 2528215 0.17% 0.028% 6.42E-5% 1.0000 21866 1 day
LastFM Music 992 174091 18908597 0.52% 0.21% 2.31E-5% 21.2715 17941 1 day
VoD IPTV 480016 46745 22515406 0.25% 0.046% 1.91E-5% 1.2135 1084297 1 day

recommendations on the site.5

We experimented with two types of context. The first is
seasonality. It consists of a season (or periodicity) and time
bands therein. Each event is assigned to a time band based
on its time stamp. The idea behind seasonality is that people
have daily/weekly/yearly routines and those are different for
different types of people (same goes for the items’ consump-
tion patterns). As season, we define one week for Grocery (as
people usually go shopping once a week) and one day for the
other data sets (as movie and music consumption shows daily
periodicity). The days of the week were used for Grocery and
four hour periods within the day for the other data sets as time
bands.

The second type of context is sequentiality [13]. The context
state of an event is the previously consumed item of the same
user. This context enables distinction between item groups
with different repetitiveness patterns (e.g. item groups that
can and those that should not be recommended subsequently).
Sequentiality tackles this problem through the co-occurrence
of the items. It – implicitly – also serves weak information
on the user or her properties (e.g.: mood) if the subsequent
events are close to each other. Each context state corresponds
to a singular preceding item.

iTALSx is compared mainly to iTALS in order to find the
differences between the behavior of the pairwise model and
the three-way model. Results for the non-context-aware iALS
[8] are also presented as a baseline. The number of features
was set to 20, 40 and 80, the number of epochs was 10. These
are typical settings in real life environments. Other parameters
such as regularization coefficients were optimized on a hold-
out set of the training data, then the algorithm was retrained
with the optimal parameters on the whole training data.

Table II contains the results. Measurements with seasonality
and sequentiality are denoted with the -S and -Q postfix
respectively. As expected, context improves recommendation
accuracy. There are two contradictory examples where the
context-unaware method performs significantly better than
iTALS. This is due to sensitivity of the elementwise model to
noise and the poor quality of this seasonal context for the TV2
dataset and the outstanding sparsity of TV2 dataset compared
to the others in this setting. The range of improvement for
iTALS and iTALSx over the context-unaware baseline is
11% − 53% and 7% − 63% respectively, with seasonality;
7%− 248% and 11%− 274% with sequentiality. I.e. iTALSx

5This does not apply if some items are highlighted from the recommenda-
tions, e.g. the picture for the first recommended item is larger.

TABLE II
RECALL@20 FOR ITALS, ITALSX AND IALS. MEASUREMENTS WITH

SEASONALITY AND SEQUENTIALITY ARE DENOTED WITH THE -S AND -Q
POSTFIX RESPECTIVELY.

GROCERY

K iALS iTALS-S iTALSx-S iTALS-Q iTALSx-Q

20 0.0649 0.0990 0.1027 0.1220 0.1182
40 0.0714 0.1071 0.1164 0.1339 0.1299
80 0.0861 0.1146 0.1406 0.1439 0.1431

TV1

K iALS iTALS-S iTALSx-S iTALS-Q iTALSx-Q

20 0.1189 0.1167 0.1248 0.1417 0.1524
40 0.1111 0.1235 0.1127 0.1515 0.1417
80 0.0926 0.1167 0.0942 0.1553 0.1295

TV2

K iALS iTALS-S iTALSx-S iTALS-Q iTALSx-Q

20 0.2162 0.1734 0.2220 0.2322 0.2393
40 0.2161 0.2001 0.2312 0.3103 0.2866
80 0.2145 0.2123 0.2223 0.2957 0.3006

LASTFM

K iALS iTALS-S iTALSx-S iTALS-Q iTALSx-Q

20 0.0448 0.0674 0.0503 0.1556 0.1675
40 0.0623 0.0888 0.0599 0.1657 0.1869
80 0.0922 0.1290 0.0928 0.1864 0.1984

VOD

K iALS iTALS-S iTALSx-S iTALS-Q iTALSx-Q

20 0.0633 0.0778 0.0790 0.1039 0.0821
40 0.0758 0.0909 0.0916 0.1380 0.1068
80 0.0884 0.0996 0.0990 0.1723 0.1342

increases the accuracy slightly more than iTALS.
The better between iTALS and iTALSx in the same setting

(i.e.: same context, number of features, dataset) is highlighted
by a light gray background. Generally, iTALSx performs better
if the number of features is lower. Also, there seems to
be a loose connection between the density of the dataset
and the relative accuracy of the two models. With a given
context, iTALSx performs better if the density of the dataset
is lower. High sparsity (lower density) is a common property
of real life datasets, therefore iTALSx is beneficial for practical
applications.

Figure 2 compares iTALS and iTALSx using high number
of features on the LastFM dataset. With seasonality, iTALS
is already better than iTALSx, even with 40 features. The
recommendation accuracy of iTALS improves faster as the
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Fig. 2. Recall@20 values for iTALS and iTALSx with seasonality (-S) and sequentiality (-Q) with the number of features ranging from 40 to 720 on the
LastFM dataset.

number of features increases. With sequentiality, iTALSx starts
off with significantly better accuracy, but as the number of
features increase, the difference becomes less significant and
it disappears at high factor models. The speed of accuracy
improvement is better for iTALS in both cases.

The blurring effect of the low feature models makes learning
difficult for iTALS, especially if the dataset is sparse. Sparser
datasets are generally more noisy, and the elementwise model
is more sensitive to noise by nature, because of the reweighting
of the user–item relation in that model. Our assumption about
the learning capabilities of the algorithms and their connection
to the finer representation of entities are underpinned as
iTALS can outperform iTALSx when the number of features
is sufficiently large or if the dataset is more dense. These
results imply that one should use iTALSx when the dataset is
sparse and we can not afford high feature models (that is most
common in practical applications).

VI. CONCLUSION

In this paper we presented iTALSx, an efficient context-
aware factorization method for implicit feedback data, which
approximates preferences as the sum of three scalar products.
It scales cubically (quadratically in practice) with the number
of features (K) and linearly with the number of events. We
compared it to iTALS, a similar method that uses a different
(three-way) model. We found that both models have their
advantages. The pairwise model of iTALSx is more efficient
in terms of accuracy if the number of features is low and
the dataset is more sparse. This is a usual setting in real life
problems. However if one can afford high factor models or
the data is more dense, iTALS should be used, as its learning
capability is higher. Thus it can achieve better results if the
number of features is sufficient.
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