iTALS

Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback

Balázs Hidasi – balazs.hidasi@gravityrd.com Domonkos Tikk – domonkos.tikk@gravityrd.com

ECML/PKDD, 25TH SEPTEMBER 2012, BRISTOL

Overview

- Implicit feedback problem
- Context-awareness
 - Seasonality
 - Sequentaility
- iTALS
 - Model
 - Learning
 - Prediction
- Experiments

Feedback types

- Feedback: user-item interraction (events)
- Explicit:
 - Preferences explicitely coded
 - E.g.: Ratings
- Implicit:
 - Preferences not coded explicitly
 - E.g.: purchase history

Problems with implicit feedback

- Noisy positive preferences
 E.g.: bought & disappointed
- No negative feedback available
 E.g.: had no info on item
- Usually evaluated by ranking metrics
 Can not be directly optimized

Why to use implicit feedback?

- Every user provides
- Some magnitudes larger amount of information than explicit feedback
- More important in practice
 - Explicit algorithms are for the biggest only

Context-awareness

- Context: any information associated with events
- Context state: a possible value of the context dimension
- Context-awareness
 - Usage of context information
 - Incorporating additional informations into the method
 - Different predictions for same user given different context states
 - Can greatly outperform context-unaware methods
 - Context segmentates items/users well

Seasonality as context

- Season: a time period
 - E.g.: a week

• Timeband: given interval in season

- Context-states
- E.g.: days
- Assumed:
 - aggregated behaviour in a given timeband is similar inbetween seasons
 - and different for different timebands
 - E.g.: daily/weekly routines

User	Item	Date	Context
1	Α	12/07/2010	1
2	В	15/07/2010	3
1	В	15/07/2010	3
1	А	19/07/2010	1

Sequentiality

- Bought A after B
 - B is the context-state of the user's event on A
- Usefullness
 - Some items are bought together
 - Some items bought repetetively
 - Some are not
- Association rule like information incorporated into model as context
 - Here: into factorization methods
- Can learn negated rules
 - If C then not A

iTALS - Model

• Binary tensor

- D dimensional
- User item context(s)

Importance weights

- Lower weights to zeroes (NIF)
- Higher weights to cells with more events
- Cells approximated by sum of the values in the elementwise product of D vectors
 - Each for a dimension
 - Low dimensional vectors

$$\hat{T}_{i_{1,\ldots,i_{D}}}=\mathbf{1}^{T}\left(M^{(1)}{}_{i_{1}}^{\circ}\ldots^{\circ}M^{(D)}{}_{i_{D}}\right)$$

iTALS - Learning

Optimizing weighted RMSE Importance weights

- "Missing" values (zeroes) must be considered
 Scalability issues with many teaching methods
- ALS used
 - Fixing all but one matrices and recompute that one
- Still requires speed-up steps
 - Computation in a non-trivial way (see paper)

•
$$O(K^3 \sum_{i=1}^D S_i + K^2 N^+)$$

iTALS - Prediction

- Sum of values in elementwise product of vectors
 - User-item: scalar product of feature vectors
 - User-item-context: weighted scalar product of feature vectors
- Context-state dependent reweighting of features
- E.g.:
 - Third feature = horror movie
 - Context state1 = Friday night \rightarrow third feature high
 - Context state2 = Sunday afternoon → third feature low

Experiments

• 5 databases

- 3 implicit
 - Online grocery shopping
 - VoD consumption
 - Music listening habits
- 2 implicitized explicit
 - Netflix
 - MovieLens 10M
- Recall@20 as primary evaluation metric
- Baseline: context-unaware method in every contextstate

Scalability

Running times on the Grocery dataset

Results - Recall@20

Results - Precision-recall curves

Summary

• iTALS is a

- scalable
- context-aware
- factorization method
- on implicit feedback data

• The problem is modelled

- by approximating the values of a binary tensor
- with elementwise product of short vectors
- using importance weighting
- Learning can be efficiently done by using
 - ALS
 - and other computation time reducing tricks
- Recommendation accuracy is significantly better than iCA-baseline
- Introduced a new context type: sequentiality
 - association rule like information in factorization framework

Thank you for your attention!

For more of my recommender systems related research visit my website: <u>http://www.hidasi.eu</u>

