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Feedback types

Feedback: user-item interraction (events)
Explicit:

= Preferences explicitely coded

= E.g.: Ratings

Implicit:

= Preferences not coded explicitely

= E.g.: purchase history



Problems with implicit feedback

Noisy positive preferences

= E.g.: bought & disappointed
No negative feedback available
= E.g.: had no info on item

Usually evaluated by ranking metrics
= Can not be directly optimized



Why to use implicit feedback?

Every user provides

Some magnitudes larger amount of information
than explicit feedback

More important in practice

= Explicit algorithms are for the biggest only



Context-awareness

Context: any information associated with events

Context state: a possible value of the context
dimension

Context-awareness
= Usage of context information
= Incorporating additional informations into the method
= Different predictions for same user given different
context states
= Can greatly outperform context-unaware methods
- Context segmentates items/users well



Seasonality as context

Season: a time period

» E.g.: a week

Timeband: given interval in season

= Context-states

= E.g.: days =8
Assumed:

= aggregated behaviour in a given
timeband is similar inbetween
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Sequentiality

Bought A after B

= B is the context-state of the user’s
event on A

Usefullness

> Some items are bought together

s Some items bought repetetively
= Some are not

Association rule like information
incorporated into model as
context

= Here: into factorization methods

Can learn negated rules
o If C then not A
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iTALS - Model

Binary tensor

= D dimensional

= User — item — context(s)

Importance weights

= Lower weights to zeroes (NIF)

= Higher weights to cells with
more events

Cells approximated by sum of

the values in the elementwise

product of D vectors

= Each for a dimension

= Low dimensional vectors




iTALS - Learning

Optimizing weighted RMSE

= Importance weights

~Missing” values (zeroes) must be considered
= Scalability issues with many teaching methods

ALS used

= Fixing all but one matrices and recompute that
one

Still requires speed-up steps
= Computation in a non-trivial way (see paper)
O(K3X7,S;+K?NY)



iTALS - Prediction

Sum of values in elementwise product of vectors
= User-item: scalar product of feature vectors

» User-item-context: weighted scalar product of
feature vectors

Context-state dependent reweighting of features
E.g.:

= Third feature = horror movie

= Context state1 = Friday night - third feature high

= Context state2 = Sunday afternoon - third
feature low



Experiments

5 databases
= 3 implicit
* Online grocery shopping
+ VoD consumption
» Music listening habits
= 2 implicitizied explicit
* Netflix
- MovieLens 10M
Recall@20 as primary evaluation metric

Baseline: context-unaware method in every context-
state



Scalability

Running times on the Grocery dataset
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Results - Recall@20
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Results - Precision-recall curves
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Summary

1ITALS 1s a

= scalable

° context-aware

s factorization method

= on implicit feedback data

The problem is modelled

= by approximating the values of a binary tensor

= with elementwise product of short vectors

= using importance weighting

Learning can be efficiently done by using

» ALS

= and other computation time reducing tricks
Recommendation accuracy is significantly better than iCA-baseline
Introduced a new context type: sequentiality

= association rule like information in factorization framework



Thank you for your attention!

For more of my recommender systems related research visit my website: http://www.hidasi.eu
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