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Feedback types

• Feedback: user-item interraction (events)

• Explicit:

▫ Preferences explicitely coded

▫ E.g.: Ratings

• Implicit:

▫ Preferences not coded explicitely

▫ E.g.: purchase history



Problems with implicit feedback

• Noisy positive preferences

▫ E.g.: bought & disappointed

• No negative feedback available

▫ E.g.: had no info on item

• Usually evaluated by ranking metrics

▫ Can not be directly optimized



Why to use implicit feedback?

• Every user provides

• Some magnitudes larger amount of information 
than explicit feedback

• More important in practice

▫ Explicit algorithms are for the biggest only



Context-awareness

• Context: any information associated with events

• Context state: a possible value of the context 
dimension

• Context-awareness

▫ Usage of context information

▫ Incorporating additional informations into the method

▫ Different predictions for same user given different 
context states

▫ Can greatly outperform context-unaware methods

� Context segmentates items/users well



Seasonality as context

• Season: a time period
▫ E.g.: a week

• Timeband: given interval in season
▫ Context-states
▫ E.g.: days

• Assumed: 
▫ aggregated behaviour in a given 

timeband is similar inbetween 
seasons

▫ and different for different 
timebands

▫ E.g.: daily/weekly routines

User Item Date Context

1 A 12/07/2010 1

2 B 15/07/2010 3

1 B 15/07/2010 3

… … …

1 A 19/07/2010 1



Sequentiality

• Bought A after B
▫ B is the context-state of the user’s 

event on A
• Usefullness

▫ Some items are bought together
▫ Some items bought repetetively
▫ Some are not

• Association rule like information 
incorporated into model as 
context
▫ Here: into factorization methods

• Can learn negated rules
▫ If C then not A



iTALS - Model

• Binary tensor
▫ D dimensional
▫ User – item – context(s)

• Importance weights
▫ Lower weights to zeroes (NIF)
▫ Higher weights to cells with 

more events
• Cells approximated by sum of 

the values in the elementwise 
product of D vectors
▫ Each for a dimension
▫ Low dimensional vectors
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iTALS - Learning

• Optimizing weighted RMSE
▫ Importance weights

• „Missing” values (zeroes) must be considered
▫ Scalability issues with many teaching methods

• ALS used
▫ Fixing all but one matrices and recompute that 

one

• Still requires speed-up steps
▫ Computation in a non-trivial way (see paper)
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iTALS - Prediction

• Sum of values in elementwise product of vectors
▫ User-item: scalar product of feature vectors
▫ User-item-context: weighted scalar product of 

feature vectors

• Context-state dependent reweighting of features
• E.g.:

▫ Third feature = horror movie
▫ Context state1 = Friday night � third feature high
▫ Context state2 = Sunday afternoon � third 

feature low



Experiments

• 5 databases
▫ 3 implicit

� Online grocery shopping

� VoD consumption

� Music listening habits

▫ 2 implicitizied explicit
� Netflix

� MovieLens 10M

• Recall@20 as primary evaluation metric
• Baseline: context-unaware method in every context-

state



Scalability
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Results – Recall@20
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Results – Precision-recall curves
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Summary

• iTALS is a
▫ scalable
▫ context-aware
▫ factorization method
▫ on implicit feedback data

• The problem is modelled
▫ by approximating the values of a binary tensor
▫ with elementwise product of short vectors
▫ using importance weighting

• Learning can be efficiently done by using
▫ ALS
▫ and other computation time reducing tricks

• Recommendation accuracy is significantly better than iCA-baseline
• Introduced a new context type: sequentiality

▫ association rule like information in factorization framework



Thank you for your attention!
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For more of my recommender systems related research visit my website: http://www.hidasi.eu


