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ABSTRACT
RNNs have been shown to be excellent models for sequential data
and in particular for data that is generated by users in an session-
based manner. The use of RNNs provides impressive performance
benefits over classical methods in session-based recommendations.
In this work we introduce novel ranking loss functions tailored to
RNNs in the recommendation setting. The improved performance
of these losses over alternatives, along with further tricks and re-
finements described in this work, allow for an overall improvement
of up to 35% in terms of MRR and Recall@20 over previous session-
based RNN solutions and up to 53% over classical collaborative fil-
tering approaches. Unlike data augmentation-based improvements,
our method does not increase training times significantly. We fur-
ther demonstrate the performance gain of the RNN over baselines
in an online A/B test.
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1 INTRODUCTION
Session-based recommendation is a very common recommendation
problem that is encountered in many domains such as e-commerce,
classified sites, music and video recommendation. In the session-
based setting, past user history logs are often not available (either
because the user is new or not logged-in or not tracked) and rec-
ommender systems have to rely only on the actions of the user in
the current sessions to provide accurate recommendations. Until
recently many of these recommendations tasks were tackled using
relatively simple methods such as item-based collaborative filter-
ing [17] or content-based methods. Recurrent Neural Networks
(RNNs) have emerged from the deep learning literature as powerful
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methods for modeling sequential data. These models have been
successfully applied in speech recognition, translation, time series
forecasting and signal processing. In recommender systems RNNs
have been recently applied to the session-based recommendation
setting with impressive results [7].

The advantage of RNNs over traditional similarity-based meth-
ods for recommendation is that they can effectively model the
whole session of user interactions (clicks, views, etc.). By modeling
the whole session, RNNs can in effect learn the ‘theme’ of the ses-
sion and thus provide recommendations with increased accuracy
(between 20%-30%) over traditional methods.

RNNs have been adapted to the task of session-based recommen-
dation. One of the main objectives in recommendation is to rank
items by user preference; i.e. the exact ranking or scoring of items
in the tail of the item list (items that the user will not like) is not
that important, but it is very important to rank correctly the items
that the user will like at the top of the list (first 5, 10 or 20 positions).
To achieve this with machine learning, one has to typically utilize
learning to rank techniques(see e.g. [3]) and in particular ranking
objectives and loss functions. The current session-based RNN ap-
proaches use ranking loss functions and, in particular, pairwise
ranking loss functions. As in most deep learning approaches the
choice of a good ranking loss can have a very significant influence
on performance. Since deep learning methods need to propagate
gradients over several layers and in the case of RNNs ’back in time’
over previous steps, to optimize the model parameters, the quality
of these gradients originating from the loss function influences the
quality of the optimization and the model parameters. Moreover
the nature of the recommendation task, which typically entails
large output spaces (due to large number of items), poses unique
challenges that have to be taken into account as well when design-
ing a proper ranking loss function. We will see that the way this
large output space issue is tackled is very crucial in achieving good
performance.

In this work we analyze ranking loss functions used in RNNs for
session-based recommendations. This analysis leads to a new set of
ranking loss functions that increase the performance of the RNN
up to 35% over previous commonly used losses without significant
computational overheads. We essentially devise a new class of loss
functions that combines learnings from the deep learning and the
learning to rank literature. Experimental results on several datasets
coming from industry validate these improvements by showing sig-
nificant increase in recommendation accuracy measured by Mean
Reciprocal Rank (MRR) and Recall@20. With these improvements
the difference between RNNs and conventional memory-based col-
laborative filtering jumps to 53% in terms of MRR and Recall@20,
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demonstrating the potential that deep learning methods bring to
the area of Recommender Systems.

1.1 Related Work
One of the main approaches that is employed in session-based
recommendation and a natural solution to the problem of a missing
user profile is the item-to-item recommendation approach [13, 17].
In this setting, an item-to-item similarity matrix is precomputed
from the available session data, items that are often clicked together
in sessions are deemed to be similar. This similarity matrix is then
used during the session to recommend the most similar items to
the one the user has currently clicked.

Long Short-Term Memory (LSTM) [10] networks are a type of
RNNs that have been shown to solve the optimization issues that
plague vanilla-type RNNs. LSTMs include additional gates that reg-
ulate when and howmuch of the input should be taken into account
and when to reset the hidden state. A slightly simplified version
of LSTM – that still maintains all their properties – is the Gated
Recurrent Unit (GRU) [5], which we use in this work. Recurrent
Neural Networks have been used with success in the area of session-
based recommendations; [7] proposed a Recurrent Neural Network
with a pairwise ranking loss for this task. [19] proposed data aug-
mentation techniques to improve the performance of the RNN for
session-based recommendations, however these techniques have
the side effect of increasing training times as a single session is
split into several sub-sessions for training. Session-based RNNs
have been augmented [8] with feature information, such as text
and images from the clicked/consumed items, showing improved
performance over the plain models. RNNs have also been used in
more standard user-item collaborative filtering settings where the
aim is to model the evolution of the user and items factors [21],[6]
where the results are less striking, with the proposed methods
barely outperforming standard matrix factorization methods. This
is to be expected as there is no strong evidence on major user taste
evolution in a single domain in the timeframes of the available
datasets and sequential modeling of items that are not ’consumed’
in sessions such as movies might not bring major benefits.

Another area touched upon in this work are loss functions tai-
lored to recommender systems requirements. This typically means
ranking loss functions. In this area there has been work particularly
in the context of matrix factorization techniques. One of the first
learning to rank techniques for collaborative filtering was intro-
duced in [20]. Essentially a listwise loss function was introduced
along with an alternating bundle method for optimization of the
factors. Further ranking loss function for collaborative filtering
were introduced in [18] [15] and [12]. Note that the fact that these
loss functions work well in matrix factorization does not guarantee
in any way that they are an optimal choice for RNNs as backpropa-
gation requirements are stronger than those posed by simple SGD.
We will in fact see that BPR, a popular choice of loss function, needs
to be significantly modified to extract optimal results in the case of
RNNs for session-based recommendations. Another work related
to sampling large output spaces in deep networks for efficient loss
computations for language models is the ’blackout’ method [11],
where essentially a sampling procedure similar to the one used

in [7] is applied in order to efficiently compute the categorical
cross-entropy loss.

2 SAMPLING THE OUTPUT
In the remainder of the paper we will refer to the RNN algorithm
implemented in [7] as GRU4Rec, the name of the implementation
published by the authors on GitHub 1. In this section we revisit
how GRU4Rec samples negative feedback on the output and dis-
cuss its importance. We extend this sampling with an option for
additional samples and argue that this is crucial for the increased
recommendation accuracy we achieve (up to 53% improvement).

In each training step, GRU4Rec takes the item of the current
event in the session – represented by a one-hot vector – as an
input. The output of the network is a set of scores over the items,
corresponding to their likelihood of being the next item in the
session. The training iterates through all events in the sequence.
The complexity of the training with backpropagation through time
is O(NE (H

2 + HNO )) where NE is the number of training events,
H is the number of hidden units and NO is the number of outputs,
for which scores are computed. Computing scores for all items is
very impractical, since it makes the network unscalable2. Therefore
GRU4Rec uses a sampling mechanism and computes the scores for
only a subset of the items during training.

Instead ofmaking a forward and backward pass with one training
example only and then moving to the next, the network is fed
with a bundle of examples and is trained on the mean gradient.
This common practice is called mini-batch training and has several
benefits, e.g. utilizing the parallelization capabilities of current
hardware better, thus training faster, and producing more stable
gradients than stochastic gradient training and thus converging
faster. GRU4Rec introduced mini-batch based sampling [7]. For
each example in the mini-batch, the other examples of the same
mini-batch serve as negative examples (see Figure 1).3 This method
is practical from an implementation point of view and can be also
implemented efficiently for GPUs.
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Figure 1: Mini-batch based negative sampling.

The network can be trained with one of three different listwise
ranking loss functions (see Section 3). All loss functions require a
score for the target item (i.e. for the item which was the actual next
item) and score(s) for at least one negative sample (i.e. item other
1https://github.com/hidasib/GRU4Rec
2While it can still result in an acceptable training time for smaller datasets, especially
if the number of items is only a few tens of thousand, algorithms scaling with the
product of the number of events and items cannot scale up for larger datasets
3E.g. assume a mini-batch of 32 examples, with one desired output (target) for each
example. Scores are computed for all 32 items for each of the 32 examples resulting in
32 × 32 = 1024 scores. Thus we have 31 scores of negative examples for each of the
targets.

https://github.com/hidasib/GRU4Rec


than the target). One property of ranking losses is that learning
happens only if the score of the target item does not exceed that
of the negative samples by a large margin, otherwise the items are
already in the right order, so there is nothing to be learned. There-
fore, when utilizing a sampling procedure, it is crucial that high
scoring items are included among the negative samples. Whether
an item has a high score, depends on the context (item sequence) for
which the scores are actually computed for. Popular items generally
score high in many situations, making popularity-based sampling a
good sampling strategy. Mini-batch sampling is basically a form of
popularity-based sampling, since the training iterates through all
events, thus the probability of an item acting as a negative sample
is proportional to its support. The problem with popularity-based
sampling is that learning can slow down after the algorithm learns
to (generally) rank target items above popular ones, and thus can
still be inaccurate for ranking long tail high scoring items. On the
other hand, uniform sampling slows down learning, due to the high
number of low scoring negative samples, but might produce an over-
all more accurate model if trained indefinitely. In our experience,
popularity-based sampling generally produces better results.

Tying sampling to the mini-batches has several practical benefits,
but is too restrictive for three reasons. (1) Mini-batch sizes are
generally small, ranging from few tens to few hundreds. If the
number of items is large, the small sample size further hinders the
chance of including all of the high scoring negative examples. (2)
Mini-batch size has a direct effect on the training. E.g. we found
that training with smaller mini-batch sizes (30-100) produces more
accurate models, but training with larger ones is faster on the
GPU due to parallelization. (3) The sampling method is inherently
popularity-based, which is a good strategy generally, but might not
be optimal for all datasets.

Therefore we extend the sampling of GRU4Rec with additional
samples. We sample NA items which are shared by the examples of
the mini-batch, i.e. the same samples are used for each example4.
These additional samples are used along with the NB − 1 samples
coming from the mini-batch based sampling (described above). The
additional samples can be sampled in any way. We chose to sample
proportional to suppαi , where suppi is the support of the item and
α is the parameter of the sampling (0 ≤ α ≤ 1). α = 0 and α = 1
gives uniform and popularity-based sampling respectively.

Adding more samples naturally increases the complexity, since
NO increases from NB to NA + NB . However, the computations
are easily parallelizable, thus there is no actual increase in the
training time on modern GPUs up to a certain sample size (see
Section 4.1). The efficient implementation of this sampling however
is not trivial. Sampling according to a distribution on GPUs is
not well supported and thus slow, therefore it should be either
handled by the CPU or requires some form of workaround. In the
former case the sampled IDs should be given to the GPU along
with the item IDs of the mini-batch. But sampling the distribution
takes some time every time a new mini-batch is formed, thus GPU
execution is frequently interrupted, makingGPU utilization low and
thus training slow. In the latter case (i.e. workaround on the GPU),
sampling by distribution is translated to a sequence of multiple GPU

4However, the scores of these samples will be still different per example, because of
the differing item sequences they are based on.

operations, resulting in an overall faster execution than the built-in
(one-step) sampling methods of the deep learning framework we
use. In both cases, sampling a few items at once is less efficient
than sampling lots of them. Therefore we also implemented a cache
that pre-samples and stores lots of negative samples. Training uses
up these samples and the cache is recomputed once it is empty.
We found that pre-sampling 10-100 million item IDs significantly
improves training speed when compared to using no cache at all.

3 LOSS FUNCTION DESIGN
In this section we examine the loss functions implemented in
GRU4Rec and identify their weaknesses. We propose two ways
to stabilize the numerical instability of the cross-entropy loss, we
show how learningwith the TOP1 and BPR pairwise losses degrades
as we add more samples to the output, and propose a family of loss
functions based on pairwise losses that alleviates this problem. We
note that, while our aim is to improve GRU4Rec, the loss functions
proposed in this section can be also used with other models, such
as matrix factorization.

3.1 Categorical cross-entropy
Categorical cross-entropy measures the distance of a proposed
(discrete) probability distribution q from the target distribution p
as defined by (1).

H (p,q) = −

N∑
j=1

pj logqj (1)

This loss is often used in machine learning and deep learning
in particular for multi-class classification problems. Next item rec-
ommendation can be interpreted as classification, where the class
labels are the items in the system and item sequences need to be
assigned with the label of the item that follows. In a single-label
scenario – such as next item recommendation – the target distribu-
tion is a one-hot vector over the set of items, with the coordinate
corresponding to the target item set to 1. The proposed distribution
consists of the scores assigned to the items by the algorithm. The
output scores need to be transformed to form a distribution. It is
common practice to use the softmax transformation (2), which is
a continuous approximation of the max operation. This naturally
aligns with the sentiment that the label with the highest score is
assigned to the sequence.

si =
eri∑N
j=1 e

r j
(2)

Cross-entropy in itself is a pointwise loss, as it is the sum of
independent losses defined over the coordinates. Combining it with
softmax introduces listwise properties into the loss, since the loss
now cannot be separated over coordinates. Putting them together
we get the following loss function over the scores (assuming that
the target item is indexed by i):

Lxe = − log si = − log
eri∑N
j=1 e

r j
(3)

Fixing the instability: One of the losses available in GRU4Rec
was cross-entropy with softmax scores. [7] reported slightly better



results than with other losses, but deemed the loss to be unstable
for a large fraction of the hyperparameter space and thus advised
against its use. This instability comes from the limited numerical
precision. Assuming that there is a k for which rk ≫ ri , si becomes
very small and rounded to 0, because of the limited precision. The
loss then computes log 0, which is undefined. Two ways to circum-
vent this problem are as follow: (a) compute − log(si + ϵ), where ϵ
is a very small value (we use 10−24); (b) compute − log si directly
as −ri + log

∑N
j=1 e

r j . The former introduces some noise, while the
latter does not allow the separated use of the transformation and
the loss, but both methods stabilize the loss. We did not observe
any differences in the results of the two variants.

3.2 Ranking losses: TOP1 & BPR
GRU4Rec offers two loss functions based on pairwise losses. Pair-
wise losses compare the score of the target to a negative example
(i.e. any item other than the target). The loss is high if the target’s
score is higher than that of the negative example. GRU4Rec com-
putes scores for multiple negative samples per each target, and
thus the loss function is composed as the average of the individual
pairwise losses. This results in a listwise loss function, which is
composed of pairwise losses.

One of the loss functions is coined TOP1 (4). It is a heuristically
put together loss consisting of two parts. The first part aims to push
the target score above the score of the samples, while the second
part lowers the score of negative samples towards zero. The latter
acts as a regularizer, but instead of constraining the model weights
directly, it penalizes high scores on the negative examples. Since
all items act as a negative score in one training example or another,
it generally pushes the scores down.

Ltop1 =
1
NS

NS∑
j=1

σ (r j − ri ) + σ (r
2
j ) (4)

j runs over the NS sampled negative (non-relevant) items, rele-
vant items are indexed by i .

The other loss function (5) is based on the popular Bayesian Per-
sonalized Ranking (BPR) [16] loss. Here the negative log-probability
of the target score exceeding the sample scores is minimized (i.e. the
probability of target scores being above sample scores is maximized).
The non-continuous P(ri > r j ) is approximated by σ (ri − r j ).

Lbpr = −
1
NS

NS∑
j=1

logσ (ri − r j ) (5)

3.2.1 Vanishing gradients. Taking the average of individual pair-
wise losses has an undesired side effect. Examining the gradients
for the TOP1 and BPR losses w.r.t. the target score ri , ((6) and (7)
respectively) reveals that under certain circumstances gradients
vanish and thus learning stops. With pairwise losses, one generally
wants to have negative samples with high scores, as those samples
produce high gradients. Or intuitively, if the score of the negative
sample is already well below that of the target, there is nothing
to learn from that negative sample anymore. For this discussion
we will denote samples where r j ≪ ri irrelevant. For an irrele-
vant sample σ (r j − ri ) in ((6) and 1 − σ (ri − r j ) (7) will be close to
zero. Therefore, any irrelevant sample adds basically nothing to

the total gradient. Meanwhile the gradient is always discounted
by the total number of negative samples. By increasing the num-
ber of samples, the number of irrelevant samples increases faster
than that of including relevant samples, since the majority of items
are irrelevant as negative samples. This is especially true for non-
popularity-based sampling and high sample numbers. Therefore the
gradients of these losses start to vanish as the number of samples
increases, which is counterintuitive and hurts the full potential of
the algorithm.56

∂Ltop1

∂ri
= −

1
NS

NS∑
j=1

σ (r j − ri )
(
1 − σ (r j − ri )

)
(6)

∂Lbpr

∂ri
= −

1
NS

NS∑
j=1

(
1 − σ (ri − r j )

)
(7)

Note, that TOP1 is also somewhat sensitive to relevant examples
where r j ≫ ri , which is an oversight in the design of the loss. While
this is unlikely to happen, it cannot be outruled. For example, when
comparing a niche target to a very popular sample – especially
during the early phase of learning – the target score might be much
lower than the sample score.

We concentrated on the gradients w.r.t. the target score, but a
similar issue can be observed for the gradients on the negative
scores. The gradient w.r.t. the score of a negative sample is the
gradient of the pairwise loss between the target and the sample
divided by the number of negative samples. This means that even
if all negative samples would be relevant, their updates would still
diminish as their number grows.

3.3 Ranking-max loss function family
To overcome the vanishing of gradients as the number of samples
increase, we propose a new family of listwise loss functions, based
on individual pairwise losses. The idea is to have the target score
compared with the most relevant sample score, which is the maxi-
mal score amongst the samples. The general structure of the loss is
described by (8).

Lpairwise−max
(
ri , {r j }

NS
j=1

)
= Lpairwise(ri ,max

j
r j ) (8)

The maximum selection is non-differentiable and thus cannot be
used with gradient descent. Therefore we use the softmax scores to
preserve differentiability. Here, the softmax transformation is only
used on the negative examples (i.e. ri is excluded), since we are
looking from the maximum score amongst the negative examples.
This naturally results in loss functions where each negative sample
is taken into account proportional to its likelihood of having the
maximal score. Based on this general idea, we now derive the TOP1-
max and BPR-max loss functions.

TOP1-max: The TOP1-max loss is fairly straightforward. The
regularizing part does not necessarily need to be only applied for the

5Simply removing the discounting factor does not solve this problem, since it is
equivalent of multiplying the learning rate by NS . This would destabilize learning
due to introducing high variance into the updates.
6For BPR, there is the option of maximizing the sum of individual pairwise probabilities∑NS
j=1 P (ri > r j ), i.e. minimizing − log

∑NS
j=1 σ (ri − r j ). However, this loss has even

worse properties.



Figure 2: Median negative gradients of BPR and BPR-max w.r.t. the target score against the rank of the target item. Left:
only minibatch samples are used (minibatch size: 32); Center: 2048 additional negative samples were added to the minibatch
samples; Right: same setting as the center, focusing on ranks 0-200.

maximal negative score, however we found that this gave the best
results, thus we kept it this way. The continuous approximation to
the maximum selection entails summing over the individual losses
weighted by the corresponding softmax scores sj , giving us the
TOP1-max loss (9).

Ltop1−max =
NS∑
j=1

sj
(
σ (r j − ri ) + σ (r

2
j )
)

(9)

The gradient of TOP1-max (10) is the softmax weighted aver-
age7 of individual pairwise gradients. If r j is much lower than the
maximum of negative scores, its weight will be almost zero and
more weight will be placed on examples with scores close to the
maximum. This solves the issue of vanishing gradients with more
samples, because irrelevant samples will be just ignored, while the
gradient will point towards the gradient of the relevant samples. Of
course, if all samples are irrelevant, the gradient becomes near zero,
but this is not a problem, since if the target score is greater than
all sample scores, there is nothing to be learned. Unfortunately, the
sensitivity to large sample scores of TOP1 is still an issue as it is the
consequence of the TOP1 pairwise loss and not the aggregation.

∂Ltop1−max

∂ri
= −

NS∑
j=1

sjσ (r j − ri )
(
1 − σ (r j − ri )

)
(10)

BPR-max: Going back to the probability interpretation of BPR,
the goal is to maximize the probability of the target score being
higher than the maximal sample score rmax = maxj r j . This can be
rewritten using conditional probabilities:

P(ri > rmax) =
NS∑
j=1

P(ri > r j |r j = rmax)P(r j = rmax) (11)

P(ri > r j ) and P(r j = rmax) is approximated by σ (ri − r j ) (as in
the original BPR loss) and the softmax score sj respectively. We
then want to minimize the negative log-probability, which gives us
the loss:
7∑ sj = 1

Lbpr−max = − log
NS∑
j=1

sjσ (ri − r j ) (12)

The gradient of BPR-max (13) is the weighted average of individ-
ual BPR gradients, where theweights are sjσ (ri−r j ). The relative im-
portance of negative samples j and k is σ (ri−r j )sj

σ (ri−rk )sk
= erj +e−ri +rj +rk

erk +e−ri +rj +rk
,

which behaves like softmax weights if ri ≫ r j + rk or if both ri
and rk are small. Otherwise it is a smoothed softmax. This means
that while ri is small, the weights are distributed more evenly, yet
clear emphasis will be given to higher sample scores. As ri becomes
higher, the focus shifts quickly to the samples with high scores.
This is an ideal behaviour.

∂Lbpr−max

∂ri
= −

∑NS
j=1 sjσ (ri − r j )

(
1 − σ (ri − r j )

)∑NS
j=1 sjσ (ri − r j )

(13)

The gradient w.r.t. a negative sample – with both the BPR-max
and TOP1-max – is proportional to the softmax score of the example,
meaning that only the items, near the maximum will be updated.
This is beneficial, because if the score of a negative sample is low,
it doesn’t need to be updated. If the score of a sample is much
higher than that of the others it will be the only one updated and
the gradient will coincide with the gradient of the pairwise loss
between the target and the sample score. In a more balanced setting
the gradient is between the aforementioned gradient and 0. For
example the gradient of BPR-max w.r.t. a negative sample’s score is
as follows:

∂Lbpr−max

∂rk
= sk −

skσ
2(ri − rk )∑NS

j=1 sjσ (ri − r j )
(14)

Figure 2 depicts how the gradients of BPR and BPR-max behave
given the rank of the target item8. The rank of the target is the
number of negative scores exceeding it, e.g. rank 0 means that the
target score is higher than all sample scores. Lower rank means

8Similar trends can be observed when comparing TOP1 and TOP1-max, even though
the shape of the curves is quite different from that of the BPR.



that there are fewer negative samples that are relevant. The figure
depicts the median negative gradient w.r.t. the target score in two
cases, measured on a dataset sample during the 1st and 10th epochs
(i.e. beginning and end of the training): (left) no additional samples
were used, only the other examples from a mini-batch of size 32;
(middle & right) 2048 additional negative samples were added. The
rightmost figure focuses on the first 200 ranks of the figure in the
middle. The gradient is slightly higher for BPR when there are more
relevant samples (i.e. high ranks). This is natural, since BPR-max
focuses on samples closest to the maximum value and ignores other
still relevant samples. This entails slightly slower learning for BPR-
max when the target item is ranked at the end of the list, but the
difference is not really significant. On the other hand, the gradient
of BPR quickly vanishes as the number of relevant samples decrease
(i.e. low ranks). The point of vanishing is relative to the total sample
size. With small sample size, BPR’s gradient starts vanishing around
rank 5 (the BPR-max does not vanish until rank 0); meanwhile, with
more samples, the BPR gradient is very low, even for rank 100-500
(again, the gradient BPR-max starts decreasing significantly later).
This means that BPR can hardly push target scores up in the ranking
after a certain point, which comes earlier as the number of sample
size increases. BPR-max, on the other hand, behaves well and is
able to improve the score all the way.

3.3.1 BPR-max with score regularization. Even though we showed
that the heuristic TOP1 loss is sensitive to relevant samples with
very high scores, it was found to be performing better than BPR in
[7]. According to our observation, the same is true for the relation
of TOP1-max and BPR-max. Part of the reasons lies in the rare
occurrence of r j ≫ ri while r j ≈ 0 simultaneously. If only the
first condition is met, the gradient w.r.t. ri might vanish, but the
regularizing part of TOP1 makes sure that r j is moved towards zero,
whichmight evenmake the update possible for ri next time (e.g. if r j
was negative, moving it towards zero decreases the difference with
ri ). The score regularization in TOP1 is very beneficial to the overall
learning process, so even though the loss might not be theoretically
optimal, it can achieve good results. GRU4Rec support two forms of
regularization with every loss: dropout and ℓ2 regularization of the
model parameters. The regularization of TOP1 is used on the top of
these. According to our experiments, the ℓ2 regularization of model
parameters decreases the model performance. Our assumption is
that some of the model weights – such as the weight matrices for
computing the update and reset gate – should not be regularized.
Penalizing high output scores takes care of constraining the model,
even without explicitly regularizing the weights.

Therefore we added score regularization to the BPR-max loss
function as well. We tried several ways of score regularization. In
the best performing one we conditioned the sample scores on inde-
pendent, zero mean Gaussians with variance inversely proportional
to the softmax score (15). This entails stronger regularization on
scores closer to the maximum, which is ideal in our case.

P
(
ri > rmax |{r j }

NS
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) NS∏
j=1

P(r j ) = P
(
ri > rmax |{r j }
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j=1

) NS∏
j=1

N

(
0,

c

sj

)
(15)

We minimize the negative log-probability and do continuous
approximations as before, resulting in the final form of the BPR-
max loss function (16). The regularization term is a simple, softmax
weighted ℓ2 regularization over the scores of the negative samples.
λ is the regularization hyperparameter of the loss.

Lbpr−max = − log
NS∑
j=1

sjσ (ri − r j ) + λ

NS∑
j=1

sjr
2
j (16)

4 EXPERIMENTS
Experimental setup:We evaluated the proposed improvements –
fixed cross-entropy loss, ranking-max loss functions & adding addi-
tional samples – on four dataset. RSC15 is based on the dataset of
RecSys Challange 20159, which contains click and buy events from
an online webshop. We only kept the click data. VIDEO and VIDXL
are proprietary datasets containing watch events from an online
video service. Finally, CLASS is a proprietary dataset containing
item page view events from an online classified site. Datasets were
subjugated to minor preprocessing then split into train and test
sets so that a whole session either belongs to the train or to the test
set. The split is based on the time of the first event of the sessions.
The datsets and the split are exactly the same for RSC15 as in [7];
and for VIDXL and CLASS as in [8]. VIDEO is of the same source
as in [7], but a slightly different subset. Table 1 overviews the main
properties of the datasets.

Table 1: Properties of the datasets.

Data Train set Test set ItemsSessions Events Sessions Events

RSC15 7,966,257 31,637,239 15,324 71,222 37,483
VIDEO 2,144,930 10,214,429 29,804 153,157 262,050
VIDXL 17,419,964 69,312,698 216,725 921,202 712,824
CLASS 1,173,094 9,011,321 35,741 254,857 339,055

Evaluation is done under the next item prediction scenario, that
is we iterate over test sessions and events therein. For each event,
the algorithm guesses the item of the next event of that session.
Since the size of the VIDXL test set is large, we compare the target
item’s score to that of the 50,000 most popular items during testing,
similarly to [8]. While this evaluation for VIDXL overestimates
the performance, the comparison of algorithms remain fair [2]. As
recommender systems can only recommend a few items at once, the
actual item a user might pick should be amongst the first few items
of the list. Therefore, our primary evaluation metric is recall@20
that is the proportion of cases having the desired item amongst the
top-20 items in all test cases. Recall does not consider the actual
rank of the item as long as it is amongst the top-N. This models
certain practical scenarios well where there is no highlighting of
recommendations and the absolute order does not matter. Recall
also usually correlates well with important online KPIs, such as
click-through rate (CTR)[9, 14]. The second metric used in the ex-
periments is MRR@20 (Mean Reciprocal Rank). That is the average
of reciprocal ranks of the desired items. The reciprocal rank is set
9http://2015.recsyschallenge.com



to zero if the rank is above 20. MRR takes into account the rank of
the item, which is important in cases where the order of recommen-
dations matter (e.g. the lower ranked items are only visible after
scrolling).

The natural baseline we use is the original GRU4Rec algorithm,
upon which we aim to improve. We consider the results with the
originally proposed TOP1 loss and tanh activation function on
the output to be the baseline. The hidden layer has 100 units. We
also indicate the performance of item-kNN, a natural baseline for
next item prediction. Results for RSC15, VIDXL and CLASS are
taken directly from corresponding papers [7, 8] and measured with
the optimal hyperparameters in [7] for VIDEO. We do separate
hyperparameter optimization on a separate validation set for the
proposed improvements.

The methods are implemented under the Theano framework [1]
in python. Experiments were run on various GPUs, training times
were measured on an unloaded GeForce GTX 1080Ti GPU. Code is
available publicly on GitHub10 for reproducibility.

4.1 Using additional samples
The first set of experiments examines the effect of additional neg-
ative samples on recommendation accuracy. Experiments were
performed on the CLASS and the VIDEO datasets. Since results
are quite similar we excluded the VIDEO results to save some
space. Figure 3 depicts the performance of the network with TOP1,
cross-entropy, TOP1-max and BPR-max losses. Recommendation
accuracy was measured with different number of additional sam-
ples, as well as in the case when all scores are computed and there
is no sampling. As we discussed earlier, this latter scenario is a
more theoretical one, because it is not scalable. As theory suggests
(see Section 3), the TOP1 loss does not cope well with lots of sam-
ples. There is a slight increase in performance with a few extra
samples, as the chance of having relevant samples increases; but
performance quickly degrades as sample size grows, thus lots of
irrelevant samples are included. On the other hand, all three of
the other losses react well to adding more samples. The point of
diminishing returns is around a few thousand of extra samples for
cross-entropy. TOP1-max starts to slightly lose accuracy after that.
BPR-max improves with more samples all the way, but slightly loses
accuracy when all items are used.

Adding extra samples increases computational cost, yet due to
easy parallelization on modern GPUs most of this cost is alleviated.
Figure 4 shows the training times at different sample sizes. Please
note the logarithmic scale. The actual training time depends on not
just the dataset, but on the model parameters as well (especially
mini-batch size) and how certain operators used for computing
the loss are supported by the framework. The trend, however, is
similar for all losses. For example, the full training of the network
is around 6-7 minutes, which does not increase with even 512 extra
samples. At the point of diminishing returns, i.e. at 2048 extra
samples, training time is still around 7-8 minutes, which is only
a slight increase. After that, training times grow quickly, due to
exceeding the parallelization capabilities of the GPU we used. The
trend is similar on the VIDEO dataset, with training times starting
around 20 minutes, starting to increase at 2048 extra samples (to 24

10https://github.com/hidasib/GRU4Rec
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Figure 3: Recommendation accuracy with additional sam-
ples on the CLASS dataset. "ALL"means that there is no sam-
pling, but scores are computed for all items in every step.

minutes) and quickly above thereafter. Thismeans that the proposed
method can be used with zero to little additional cost in practice,
unlike data augmentation methods. It is also clear that GRU4Rec
can work just as well with a few thousands of negative examples
as with the whole itemset, thus it can be kept scalable.
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Figure 4: Training times with different sample sizes on the
CLASS dataset.

In the next experiment we perform a parameter sensitivity anal-
ysis of the α parameter that controls the sampling. Figure 5 depicts
the performance over differentα values for the cross-entropy, TOP1-
max and BPR-max losses. Cross-entropy favors higher α values
with low sample sizes and low α values for large samples. This is
inline with our discussion in Section 2: popular samples are useful
when the sample size is very limited and at the beginning of the
training, but might be exhausted quickly, thus switching to a more
balanced sampling can be beneficial if we have the means to (e.g.
large enough sample size). Also, the uniform sampling in this case
is supplemented by the few popularity based samples of the mini-
batch sampling. The ranking-max losses, on the other hand, seem
to prefer the middle road with a slight preference towards higher
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Figure 5: The effect of the alpha parameter on recommendation accuracy at different sample sizes on the CLASS dataset. Left:
cross-entropy loss; Middle: TOP1-max loss; Right: BPR-max loss.

Table 2: Recommendation accuracy with additional samples and different loss functions compared to item-kNN and the orig-
inal GRU4Rec. Improvements over item-kNN and the original GRU4Rec (with TOP1 loss) results are shown in parentheses.
Best results are typeset bold.

Dataset Item GRU4Rec GRU4Rec with additional samples
kNN original XE TOP1 XE TOP1-max BPR-max

Recall@20

RSC15 0.5065 0.5853 0.5781 0.6117 (+20.77%, +4.51%) 0.7208 (+42.31%, +23.15%) 0.7086 (+39.91%, +21.07%) 0.7211 (+42.37%, +23.20%)
VIDEO 0.5201 0.5051 0.5060 0.5325 (+2.40%, +5.43%) 0.6400 (+23.06%, +26.72%) 0.6421 (+23.46%, +27.12%) 0.6517 (+25.31%, +29.03%)
VIDXL 0.6263 0.6831 0.7046 0.6723 (+7.35%, -1.58%) 0.8028 (+28.19%, +17.53%) 0.7935 (+26.70%, +16.16%) 0.8058 (+28.66%, +17.97%)
CLASS 0.2201 0.2478 0.2545 0.2342 (+6.41%, -5.50%) 0.3137 (+42.54%, +26.61%) 0.3252 (+47.75%, +31.22%) 0.3337 (+51.61%, +34.66%)

MRR@20

RSC15 0.2048 0.2305 0.2375 0.2367 (+15.61%, +2.69%) 0.3137 (+53.16%, +36.08%) 0.3045 (+48.70%, +32.08%) 0.3170 (+54.78%, +37.52%)
VIDEO 0.2257 0.2359 0.2609 0.2295 (+1.69%, -2.73%) 0.3079 (+36.42%, +30.52%) 0.2950 (+30.72%, +25.05%) 0.3089 (+36.87%, +30.95%)
VIDXL 0.3740 0.3847 0.4343 0.3608 (-3.53%, -6.21%) 0.5031 (+34.52%, +30.78%) 0.4939 (+32.05%, +28.39%) 0.5066 (+35.45%, +31.68%)
CLASS 0.0799 0.0949 0.0995 0.0870 (+8.83%, -8.36%) 0.1167 (+46.08%, +22.99%) 0.1198 (+49.93%, +26.25%) 0.1202 (+50.40%, +26.63%)

values, while the extremes perform the worst. We assume that this
is mostly due to (a) being based on pairwise losses, where popular
samples are usually desired; (b) and the score regularization: with
popularity based sampling the scores of the most popular items
would be decreased beyond what is desirable.

4.2 Loss-functions
We measure the performance gain of the proposed improvements
over the baselines. The big accuracy improvement comes from the
combination of additional samples and the loss functions (fixed
cross-entropy, TOP1-max and BPR-max). Table 2 showcases our
most important results. Besides the original version of GRU4Rec
and the item-kNN, we included results with cross-entropy (XE) loss
without additional sampling to confirm that the fixed cross-entropy
loss still performs just slightly better than TOP1. The increase with
sampling and the proper loss function is stunning as the best results
exceed the accuracy of the original GRU4Rec by 18 − 37.5% and
that of item-kNN by up to 55%. BPR-max performs similarly (2 of 4)
or better (2 of 4; +2 − 6% improvement) than cross-entropy when
extra samples are used for both method.

On RSC15, [19] reported ∼ 0.685 and ∼ 0.29 in recall@20 and
MRR@20 respectively11 using data augmentation. Unlike our so-
lutions, data augmentation greatly increases training times. Data
augmentation and our improvements are not mutually exclusive,
thus it is possible that by combining the two methods, even better
results can be achieved. A recent paper [4] proposes the Bayesian
version of GRU4Rec and reports ∼ 0.61 and ∼ 0.25 in recall@20 and
MRR@20 when using 100 units12. Therefore our GRU4Rec version
is the current best performer so far.

4.3 Unified item representations
Previous experiments did not find any benefits of using an em-
bedding layer before the GRU layers. The role of the embedding
layer is to translate item IDs into the latent representation space.
In the recommender systems terminology, item embeddings cor-
respond to “item feature vectors”. The network has another “item
feature matrix” though in the form of the output weight matrix.
By unifying the representations, i.e. sharing the weight matrix be-
tween the embedding layer and the output layer, we learn better

11Read from figure4. Unfortunately, the results in table1 are for networks trained on
various subsets of the training set.
12Based on figure1. Their best results (0.6507 and 0.3527) are achieved using 1500
units, which is highly impractical. Even though, our version still performs better w.r.t.
recall when compared to this much bigger network.



Table 3: Results with unified embeddings. Relative improve-
ment over the same network without unified item represen-
tation is shown in the parentheses.

Dataset Recall@20 MRR@20

RSC15 0.7244 (+0.45%) 0.3125 (-1.42%)
VIDEO 0.6598 (+1.25%) 0.3066 (-0.74%)
VIDXL 0.8110 (+0.65%) 0.5099 (+0.66%)
CLASS 0.3962 (+18.74%) 0.1555 (+29.44%)

item representations quicker. Preliminary experiments (Table 3)
show additional slight improvements in recall@20 and slight de-
crease in MRR@20 for most of the datasets. However, for the CLASS
dataset both recall and MRR are increased significantly when uni-
fied embeddings are used (+18.74% and +29.44% in recall and MRR
respectively, compared to the model trained without embeddings).
Unified embeddings have the additional benefit of reducing the
overall memory footprint and the model size by a factor of ∼ 4.

4.4 Online tests
With the improvements proposed in this paper, it became techni-
cally feasible to also evaluate GRU4Rec in a large scale online A/B
test on an online video portal. Recommendations are shown on
each video page and are available as soon as the page loads. The
site has an autoplay function, similar to the one on Youtube. If the
video is accessed from the recommendation queue by either the
user clicking on one of the recommended items or by autoplay, no
new recommendation is calculated, thus the user can have multiple
interactions with one recommended set of items. The user can also
access videos directly, and then a new set of video recommendations
is generated for her.

Experimental setup: GRU4Rec was compared to a fine tuned
complex recommendation logic for a duration of 2.5 months. Users
are divided into three groups. The first group is served by the
baseline logic. The second group is served by GRU4Rec in “next
best” mode, meaning that the algorithm shows recommendations
that are very likely to be the next in the user’s session. The third
group is served by GRU4Rec in “sequence mode” where GRU4Rec
generates a sequence of items based on the session so far. The
sequence is generated greedily, i.e. the algorithm assumes that its
next best guesses were correct so far. Bots and power users are
filtered from the measurement as they can skew the results. Bots
are filtered based on the user agent. Unidentified bots and power
users (e.g. users leaving videos playing for a very long time) and
users with unrealistic behaviour patterns are also filtered on a daily
basis. The proportion of non-bot users affected by filtering is very
low (∼ 0.1%).

KPIs: We used different KPIs to evaluate performance. Each KPI
is relative to the number of recommendation requests. Watch time
is the total number of seconds of videos watched by the group.
Video plays is the number of videos watched for at least a certain
amount of time by the group. Clicks is the number of times the
group clicked on the recommendations.

Results: Figure 6 shows the relative performance gain of GRU4Rec
over the complex logic. The error bars represent the confidence
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Figure 6: Performance of GRU4Rec relative to the baseline
in the online A/B test.

interval at p = 0.05. GRU4Rec outperforms the baseline in both
prediction modes. The improvement is approximately 5% in watch
time, 5% in video plays and 4% in clicks. Sequential predictions
perform better than next best guess based predictions w.r.t. watch
time and number of video plays, but not in clicks. This is due to
sequential predictions being more appropriate for the autoplay
functionality, thus resulting in less clicks from the users. On the
other hand, while next best guess based predictions are relevant,
they are also more diverse and it is more likely for the user to skip
videos in the recommendation queue. Sequential predictions are
more appropriate for video series and other closely knit videos. We
also noticed that as the two prediction modes run simultaneously
and learn from each other’s recommendations through the feedback
loop, the differences in watch time and video plays slowly start to
disappear.

5 CONCLUSION
In this paper we focused on session-based recommendations, which
is becoming one of the most important recommendation scenarios
in practice for many domains, including video, music and general
e-commerce and even for novel applications such as energy saving
recommendations. We introduced a new class of loss functions that
together with an improved sampling strategy have provided im-
pressive top-k gains for RNNs for session-based recommendations.
We believe that these new losses could be more generally applicable
and along with the corresponding sampling strategies also provide
top-k gains for different recommendations settings and algorithms
such as e.g. matrix factorization or autoencoders. It is also con-
ceivable that these techniques could also provide similar benefits
in the area of Natural Language Processing a domain that shares
significant similarities to the recommendation domain in terms of
machine learning (e.g. ranking, retrieval) and data structure (e.g.
sparse large input and output space). We also showed that by using
these improvements along with other minor ones – such as unified
embeddings – GRU4Rec can outperform previous solutions in a
live online setting according to important business KPIs.
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