Context-aware Preference Modeling with Factorization

Balázs Hidasi

RecSys'15, Doctoral Symposium 19. September 2015

Outline

- I. Background
 - a. Implicit feedback
 - b. Context
 - c. Factorization
- II. Finished research
 - a. Context-aware algorithms (iTALS, iTALSx)
 - b. Speeding-up ALS
 - c. General Factorization Framework
- III. Future research
 - a. Automatic preference model learning
 - b. Context-related research

Background

Implicit feedback

- + The practical scenario
- + Collected by passive monitoring
- + Available in large quantities
- - Preferences are not explicit
- - Noisy positive feedback
- No negative feedback
- Missing feedback needs to be handled

Context

- Context: Additional side information that can help refining the recommendations and tailoring them in order to fit the users' actual needs better.
- Context helps:
 - Dealing with context related effects during training
 - Adapting recommendation lists during recommendation time
- Types
 - User side information: user metadata, social networks, etc.
 - Item side information: item metadata, etc.
 - Context of transactions: time, location, device, etc.

Factorization

- Project entities into a low dimensional latent feature space
- The interaction between the representations estimate the preferences

Research

Context-aware algorithms [1,2]

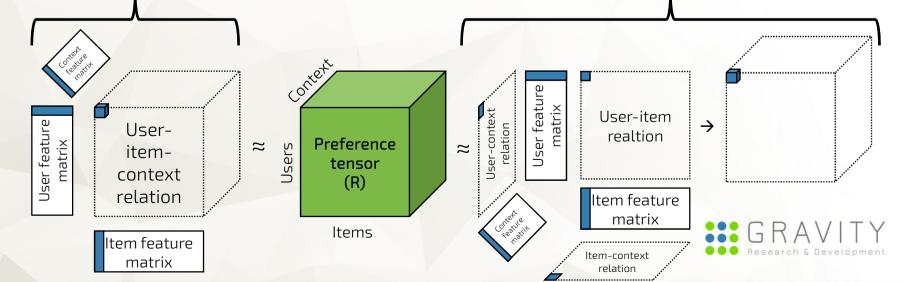
• iTALS / iTALSx

- Pointwise preference estimation
- ALS learning
- Scales linearly with the number of transactions
- Different models

N-way model (iTALS)

- Models for different problems
 - Low number of features, sparser data → iTALSx
 - Denser data, using higher number of features is possible → iTALS

Pairwise interaction model (iTALSx)



Speeding up ALS [3]

- ALS scales cubically (quadratically in practice) with the number of features
 - Bottleneck: solving a $K \times K$ system of linear equations
 - Highly impractical to use high factor models
- Approximate solutions for speed-up
 - ALS-CG: conjugate gradient based direct approximation of ALS
 o Efficiency depends on matrix-vector multiplication
 - ALS-CD: optimize on a feature-by-feature basis (instead of computing whole feature vectors)
 - \circ Implicit case: lots of negative examples \rightarrow compression

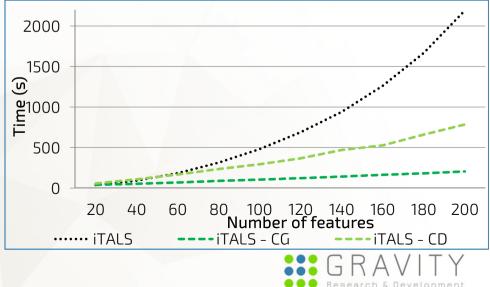
Speed-up results

• Accuracy similar to ALS

Method	Similar	Worse	Better
ALS-CG	62 of 75 (82.67%)	10 of 75 (13.33%)	3 of 75 (4%)
ALS-CD	57 of 75 (76%)	16 of 75 (21.33%)	2 of 75 (2.67%)

Significant speed-up

- Better trade-offs (accuracy vs. time)
- More efficient resource usage
- Linear scaling with the number of features (in practice)
 - High factor models are usable
- CG or CD?



GFF: General Factorization Framework [4]

- An algorithm that allows experimentation with novel models for the contextaware recommendation problem, that are not restricted to the two main model classes used by the state-of-the-art.
- Motivation
 - N_D dimensions \rightarrow lots of different possible preference models
 - Standard models not necessarily fit the problem (e.q. asymmetry)
 - Lack of tool that has this flexibility
- Features
 - No restriction on the context
 - Large preference model class
 - Data type independence
 - Flexibility
 - Scalability

Novel preference models with GFF (1)

Interactions with context

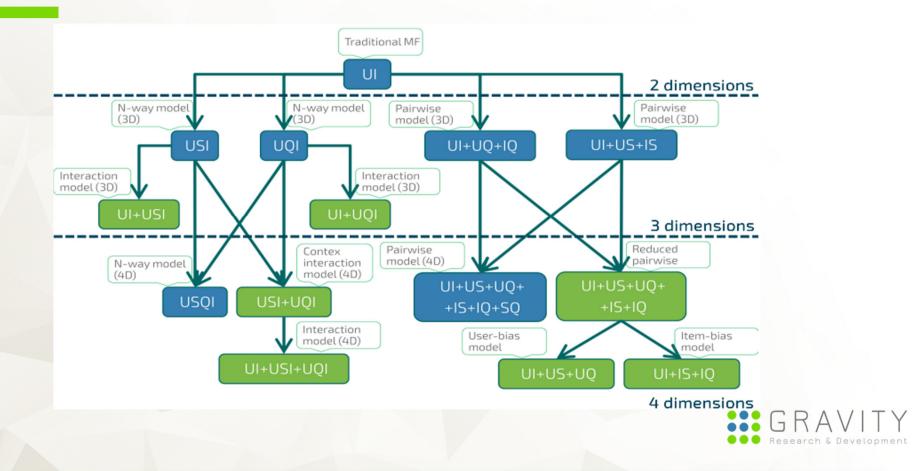
- User-item
- User-context-item (reweighting)
- User-context (bias)
- Item-context (bias)
- Context-context?

• A 4D problem

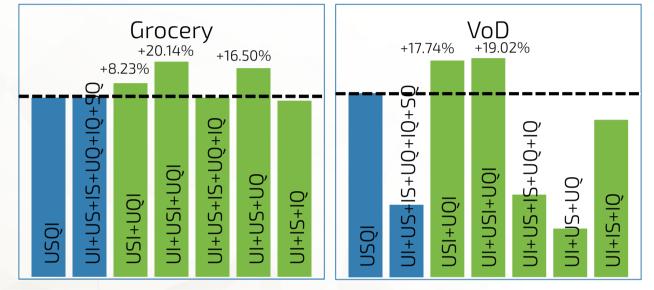
- Users (U)
- Items (I)
- Seasonality (S)
- Sequentiality (Q)

- Traditional models
 - N-way (USQI)
 - Pairwise (UI+US+IS+UQ+IQ+SQ)
- Novel models
 - Interaction (UI+USI+UQI)
 - Context-interaction (USI+UQI)
 - Reduced pairwise (UI+US+IS+UQ+IQ)
 - User bias (UI+US+UQ)
 - Item bias (UI+UQ+IQ)
 - (Other interesting ones: UI+USQI; UI+USI+UQI+USQI; USI+UQI+USQI)

Novel preference models with GFF (2)



Performance of novel models



Dataset	Best model	Improvement (over traditional)	Novel better than traditional
Grocery	UI+USI+UQI	+20.14%	3 of 5
TV1	USI+UQI	+15.37%	2 of 5
TV2	UI+USI+UQI	+30.30%	4 of 5
LastFM	UI+USI+UQI	+12.40%	3 of 5
VoD	UI+USI+UQI	+19.02%	2 of 5

Future research

Automatic model learning for GFF

• Flexibility of GFF

- Useful for experimentation
- Finding the best (or fairly good) model requires lots of experiments for a new setup
- Automatize model selection
 - Which contexts should be used?
 - Which interactions should be used?

Model selection with LARS

- Model: UI+US+IS+USI+UQ+IQ+UQI+USQI+USQ+ISQ+SQ
- Each term contributes to the prediction of the preferences
- Terms are the features
- Inferred preferences (0/1) are the target
 - For every possible (u,i,s,q) combination
 - Weighting: multiply examples of positive feedback by the weight

Efficiency of the model selection

- Lot of examples → efficiency?
- Efficient LARS implementations require only the
 - Covariance of features
 - Correlation of features with the target
- E.g.: $\sum_{u,i,s,q} w_{u,i,s,q} \mathbf{1}^T (U_u \circ S_s) \mathbf{1}^T (U_u \circ I_i \circ Q_q)$
 - Sum has many members
 - Can be computed efficiently $O(N^{+}K^{2} + S_{U}K^{2} + S_{I}K^{2} + S_{S}K^{2} + S_{Q}K^{2})$
 - Precomputed covariance matrices and sums of vectors required

Interaction of dimensions

- When to use the model selection?
- Dimension interact
 - One ALS epoch modifies a certain feature to be optimal with the current model
 - Different terms optimize for different aspects (e.g. USI and IS)
 - Shared features will be suboptimal to either but may lean to one side
 - o Problems with unbiased selection
- Handle terms or groups of terms separately
 - Hard to integrate into solution
 - Requires multiple instances of feature matrices
 - Increases model complexity

4/22/2015

Selection strategies

- Joint pretraining (few epochs), model selection, training selected model
- Multiple iterations of pretraining and selecting
- Joint training of a few terms, extend to full model using the trained features, (additional training), selection, train
- Separate training, model selection, (merge separate feature matrices for the same dimension), (training)
- Separate training, model selection, train non selected members on the residual

4/22/2015

Context-related research

Non-conventional context

- Standard context: entity based
- Other types
 - o Hierarchical
 - o Composite
 - o Ordered
 - o Continuous

Context quality

- General quality
- Suitability for a model or interaction type
- Improving quality by splitting/combining context-states

Thank you!

References (papers can be downloaded from http://hidasi.eu)

[1] Balázs Hidasi and Domonkos Tikk: Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback. ECML-PKDD (2012)

[2] Balázs Hidasi: Factorization models for context-aware recommendations. Infocommunications Journal VI(4) (2014)

[3] Balázs Hidasi and Domonkos Tikk: Speeding up ALS learning via approximate methods for context-aware

recommendations. Knowledge and Information Systems (2015)

[4] Balázs Hidasi and Domonkos Tikk: General factorization framework for context-aware recommendations. Data Mining and Knowledge Discovery (2015)

