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ABSTRACT
This work focuses on solving the context-aware implicit feed-
back based recommendation task with factorization and is
heavily influenced by the practical considerations. I pro-
pose context-aware factorization algorithms that can effi-
ciently work on implicit data. I generalize these algorithms
and propose the General Factorization Framework (GFF) in
which experimentation with novel preference models is pos-
sible. This practically useful, yet neglected feature results
in models that are more appropriate for context-aware rec-
ommendations than the ones used by the state-of-the-art. I
also propose a way to speed up and enhance scalability of
the training process, that makes it viable to use the more
accurate high factor models with reasonable training times.

Categories and Subject Descriptors
I.2.6 [[Artificial Intelligence]]: Learning - Parameter Learn-
ing

General Terms
Algorithms, Experimentation

Keywords
recommender systems; context-awareness; factorization; pref-
erence modeling; implicit feedback; scalability

1. INTRODUCTION
Recommender systems are more and more widely used

in e-commerce and on multimedia sites. My work focuses
on advanced algorithms that can be used in practical rec-
ommender system. One of the biggest distinction between
practice and academic research is that the latter focuses on
explicit feedback and the prediction of ratings, while the
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former uses implicit feedback and requires top N recommen-
dations. Although there has been a shift towards this more
practical setting in the last few years, the majority of re-
search still focuses on ratings.

Implicit feedback is collected via monitoring the behaviour
of users while they use a service (e.g. a web shop). User in-
teraction is not required in order to get the feedback, there-
fore it is available in large quantity. This is of key impor-
tance in practical scenarios. Explicit feedback on the other
hand is usually either not available or its amount is negligi-
ble compared to implicit feedback. The primary challenge
of implicit feedback is that it does not explicitly encode user
preferences. These preferences must be inferred from the
interactions. The presence of an user action on an item (e.g.
purchase) is considered to be a noisy sign of positive prefer-
ence. However it is much harder to infer negative feedback
as the absence of an event can be traced back to multiple
causes, the most common being that the user does not know
about the item. Although there are some ways to infer neg-
ative feedback in special cases, it is generally assumed to be
missing and the absence of positive feedback is considered
as a very week sign of negative preference.

Context-aware recommender systems (CARS) consider ad-
ditional information (termed context) besides user–item in-
teractions. Any information can be considered as context,
however I argue that it is useful to distinguish event con-
text from other types of data, such as item metadata, socio-
demographic information or social network of the user. The
common property of latter categories is that they are bound
either to the item or to the user. Also, they are thoroughly
examined in specific research topics, such as content based
or hybrid recommenders. On the other hand, event context
is associated with the interaction of the users and items and
can not be bounded to either one. Typical examples are the
time or the location of the event. The hypothesis of context-
aware recommendations is that they can significantly im-
prove recommendation accuracy, because (1) context related
effects can be handled during training; (2) recommendation
lists can be tailored according to the actual value of the
context, which may influence the users’ needs.

One of the most extensive data models for representing
context-enhanced data is the Multidimensional Dataspace
Model (MDM) [1] in which the dataspace is the Cartesian
product of several dimensions, and each dimension is the
Cartesian product of one or more attributes. Attributes
are atomic and nominal and their value comes from a finite
set of values. Almost all practically used context-enhanced
data can be expressed in a more simple dataspace model,



where each dimension consist of exactly one attribute. I refer
to this dataspace model as single attribute MDM or SA-
MDM. Note that if data is representable in SA-MDM it is
also representable in a tensor. The SA-MDM representation
is powerful enough for commonly used context dimensions,
such as time or location1.

Latent feature based collaborative filtering methods—such
as matrix factorization—have gained popularity in the last
decade due to their high accuracy and good scalability. My
work focuses on factorization methods for implicit feedback
that also incorporate context dimensions.

2. PREFERENCE MODELS & CONTEXT
In my early work I proposed a context-aware tensor fac-

torization algorithm—iTALS (implicit Tensor Alternating
Least Squares) [6]—for the implicit feedback problem. The
algorithm works with SA-MDM. The presence of an event
(i.e. a combination of attributes is in the training data) is
considered to be strong positive preference, while the ab-
sence of an event is considered to be weak negative prefer-
ence. The method uses pointwise ranking by optimizing for
weighted root mean squared error (wRMSE). The value of
the target is 1 for positive and 0 for negative feedback; the
weight for positive feedback is much higher than for neg-
ative. Interaction data is inherently sparse and the usage
of additional context dimension makes it even sparser; thus
majority of the values in the tensor are zeros. However,
contrary to explicit problems, there are no missing values
in the tensor that makes the direct application of explicit
algorithms inefficient. In iTALS, each dimension is assigned
with a feature matrix that contains feature vectors of K
length for all of the possible attribute values in that dimen-
sion. For the prediction of preferences iTALS uses the N-
way model, i.e. the “dot product” of one feature vector from
every dimension, corresponding to the user–item–context(s)
configuration on which the prediction is requested.

The iTALSx algorithm [4][5] is a variation of iTALS. The
difference is in the prediction model for which iTALSx uses
a variant of the pairwise model, i.e. the sum of dot products
between pairs of feature vectors. iTALSx considers only the
user–item, user–context(s) and item–context(s) pairs2. The
change in the model affects the optimization procedure.

Generalizing the idea of factorization, preference models—
i.e. the expression with which the preference (or rating) is
approximated—can be considered as the sum of various in-
teractions. An interaction type is the dot product of feature
vectors from selected dimensions, one vector per dimension
(e.g. the user and the item feature vector for the given user
and item). With only the user and item dimensions, there
is only one possible interaction type: the user–item interac-
tion (UI). This results in one possible factorization model.
Adding one context dimension (S) gives the following new
interaction types. USI is a reweighted user–item interaction
where the weight is dependent on the value of the context.
US and IS are context-dependent user and biases. The
number of different models with 3 dimensions is 15. Adding
another context (Q) further increases the number of interac-
tion types. Besides UQI, UQ and IQ, there is USQI (the

1Even context dimensions that contain more than one at-
tribute can be represented in SA-MDM, but less effectively.
2Other methods, such as Factorization Machines [11] also
use context–context pairs in their variation of the this model.

user–item interaction whose reweighting depends on both
context dimensions); USQ, ISQ and SQ in which there is
some kind of interaction between context dimensions. The
number of possible models with 4 dimensions is 2047.

However, not all of the interaction types are of equal im-
portance. Generally items are recommended to users, there-
fore these two dimensions are more important. Also, users
are the only entities which act and the target of these actions
are the items. Context on the other hand is not a direct par-
ticipant in the transactions, but may influence behaviour.

Despite of the large number of models, only two of them
are used widely in the literature: the N-way and the full
pairwise interaction model. Both of these models are sym-
metric, thus all dimensions are considered to be equal.

The choice of the model affects the optimization, but it
is ineffective to implement a new version of an algorithm
for every one of them. Therefore I created the General Fac-
torization Framework (GFF) [7], which is a single flexible
algorithm that takes the preference model as an input and
does the computations accordingly. GFF allows its user to
easily experiment with various linear models on any context-
aware recommendation task. The following properties were
important at the design of GFF.

1. No restriction on context3: GFF works on any context-
aware recommendation problem independently of the
number and the meaning of context dimensions.

2. Large preference model class: the only restriction on
the preference model is that it must be linear in the
dimensions of the problem4. This restriction does not
restrict the applicability to real-world problems.

3. Data type independence: the implicit case is in the
focus, but explicit problems can be also addressed by
simply changing the weighting scheme in the loss func-
tion.

4. Flexibility: the weighting scheme of GFF is very flex-
ible, enabling to incorporate extra knowledge through
the weights such time decay, dwell time dependent
weighting, missing not at random hypotheses and more.

5. Scalability: GFF scales well both in terms of the num-
ber of interactions in the training set and in the num-
ber of features. This makes it applicable in real life
recommender systems. (See Section 3.)

Along with the users (U) and items (I), I used two context
dimensions—seasonality (S) and sequentiality (Q)—that are
available with every implicit datasets as long as the times-
tamp of the events is recorded. Their availability and use-
fulness makes these dimensions suitable for the experiment.

Seasonality: Many application areas of recommender
systems exhibit the seasonality effect, because periodicity
can be observed in many human activities. Thus seasonal
data is an obvious choice for context [9]. First, the length of
the season has to be defined. No repetitions are expected in
the aggregated behavior of users within a season, and simi-
lar aggregated behaviour is expected at the same time offset
in different seasons. Next, time bands need to be created
within the seasons that are the context-states. Time bands
specify the time resolution of a season. The length of time

3The basic GFF builds on SA-MDM, but the algorithm also
has an extension that is compatible with the full MDM.
4Meaning that a dimension can not directly interact with
itself in the model.



bands can be equal or different. In the final step, events are
assigned to time bands according to their time stamp.

Sequentiality: In some domains, like movies or music,
users consume similar items. In other domains, like elec-
tronic gadgets or e-commerce in general, they avoid items
similar to what they already consumed and look for comple-
mentary products. Sequential patterns can be observed on
both domain types. Sequentiality was introduced in [6] and
uses the previously consumed item of the user as a context
for the actual item. This information helps in the charac-
terizations of repetitiveness related usage patterns and se-
quential consumption behavior.

Besides the traditional N-way and pairwise models, I se-
lected the following preference models for experimentation.

• Interaction model (UI + USI + UQI): The model
is the composite of the base behavior of the users (UI)
and the context-influenced modification of this behav-
ior (USI and UQI). This model assumes that the
preferences of the users can be divided into context
independent and dependent parts.
• Context interaction model (USI + UQI): Pref-

erences in this model are modeled by solely context
dependent parts, i.e. it assumes that user–item inter-
actions strongly depend on the context and this de-
pendency affects the whole interaction.
• Reduced pairwise model

(UI + US + IS + UQ + IQ): This model is a mi-
nor variation of the traditional pairwise model with
the exclusion of the interaction between context di-
mensions (SQ). The interaction with context is done
separately by users and items.
• User bias model (UI + US + UQ): Here it is as-

sumed that only the user interacts with the other di-
mensions. This results in a model where the user–item
relation is supported by context dependent user biases.
Note that during recommendation the user biases are
constant, thus do not affect the ranking. But they
filter out some context related noise during training.
• Item bias model (UI + IS + IQ): This model as-

sumes that the effect of context can described by con-
text dependent item biases (e.g. items are popular
under certain conditions). The item biases affect the
ranking as well as filter context related noise.
• A complex model

(UI + US + IS + UQ + IQ + USI + UQI): This
model is the composite of the reduced pairwise and
the interaction model. It can be also treated as a re-
duced 3-way interaction model from which the context-
context interactions are omitted.

2.1 Evaluation of models
I used five genuine implicit feedback data sets to evaluate

the models in GFF. Three of them are public (LastFM 1K,
[2]; TV1, TV2, [3]), the other two are proprietary (Grocery,
VoD). The properties of the data sets are summarized in
Table 1. The train–test splits are time-based: the first event
in the test set falls chronologically after the last event of the
training set. Artists were used as items in LastFM.

The primary evaluation metric is recall@20. The reason
for using recall@N is threefold: (1) in live recommender sys-
tems recall correlates well with click-through rate (CTR),
an important metric for recommendation success. (2) Re-
call@20 is a good proxy of estimating recommendation ac-

Table 1: Main properties of the data sets

Dataset Domain
Training set Test set

#Users #Items #Events #Events Length

Grocery E-grocery 24947 16883 6238269 56449 1 month
TV1 IPTV 70771 773 544947 12296 1 week
TV2 IPTV 449684 3398 2528215 21866 1 day
LastFM Music 992 174091 18908597 17941 1 day
VoD IPTV/VoD 480016 46745 22515406 1084297 1 day

curacy offline for real-world applications[6][10]. (3) Recall
is event based, while ranking based metrics like MAP and
NDCG are query based. The inclusion of context changes
the query set of the test data, therefore the comparison by
query based metrics is unfair.

The hyperparameters of the algorithms, such as regular-
ization coefficients were optimized on a part of the training
data (validation set). Then the algorithm was trained on the
whole training data (including the validation set) and recall
was measured on the test set. The number of epochs was set
to 10, because all methods converge in at most 10 epochs.
The number of features was set to K = 80 that is a good
trade-off between accuracy and training time in practice.

Table 2: Recall@20 values for models within GFF.
Grey: traditional models. Bold: best results.

Model Grocery TV1 TV2 LastFM VoD

USI + UQI 0.1504 0.1551 0.2916 0.1984 0.1493
UI + USI + UQI 0.1669 0.1482 0.3027 0.2142 0.1509
USQI 0.1390 0.1315 0.2009 0.1906 0.1268
UI+US+IS+UQ+
IQ

0.1390 0.1352 0.2388 0.1884 0.0569

UI + US + UQ 0.1619 0.0903 0.1399 0.1993 0.0335
UI + IS + IQ 0.1364 0.1266 0.2819 0.1871 0.1084
UI+US+IS+UQ+
IQ + SQ

0.1388 0.1344 0.2323 0.1873 0.0497

UI+US+IS+UQ+
IQ + USI + UQI

0.1389 0.1352 0.2427 0.1866 0.0558

Table 2 shows the accuracy of two traditional models and
six novel models. There exists a novel model with all five
datasets that performs better than both traditional models.
4 out of 5 cases the interaction model (UI + USI + UQI)
is the best and it is the second best in the remaining one
case. Thus this model is not only intuitively sound but also
performs well that underpins its assumptions.

3. SCALABILITY IMPROVEMENT
GFF, iTALS and iTALSx use Alternating Least Squares

(ALS) during training. In ALS, feature matrices are com-
puted in an alternating fashion and all but the currently
computed matrix are fixed. The efficient usage of ALS with
implicit problems is not straightforward, although it is pos-
sible with the smart separation of computations. The com-
putation of one feature matrix can be divided into three
phases[6][5]: (1) computing common statistics5 that are the
same for all feature vectors; (2) feature vector specific up-
date of the statistics using the training events; (3) solving a
K ×K sized system of linear equations per feature vector.

This way, the complexity of one epoch (computing each

feature matrix once) is O(ND|O|N+K2+
∑ND

i=1 SiK
3), where

N+, K, ND, Si are the number of events, features, dimen-
sions, different values of the attribute in the ith dimension
and |O| is the complexity of the preference model. The
method scales linearly with the number of events, which is
very important in practice. It scales cubically with the num-
ber or features, but since ND|O|N+ �

∑ND
i=1 Si the first

5A K ×K sized matrix and a vector of K length.
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Figure 1: Time of one epoch of ALS, CD & CG with
iTALS w.r.t. different number of features, using one
CPU core

term is dominant in the range of practically used feature
numbers an thus it scales quadratically with K in practice.
This scaling property is fine for smaller K values but the
training takes a lot of time for high factor models. For prac-
tical applicability, the training time of the algorithms is a key
aspect. Faster training allows to (1) capture a more recent
state of the system modeled; (2) retrain the models more
frequently; (3) apply trade-off between running times and
accuracy by using more features or running more epochs.

I created two approximate solutions that scale better in
the number of features than ALS, but achieve similar rec-
ommendation accuracy[8]. The first uses Coordinate De-
scent (CD), an ALS variant in which each feature is com-
puted separately while the others are fixed. The appli-
cation of CD to this problem requires the efficient han-
dling of the large amounts of “missing” feedback. CD does
not approximate the ALS solution and has a complexity of
O(ND|O|NIN

+K +
∑ND

i=1 SiK
2NI +NDK3) (linear in K in

practice for the lower range of practical K values), where
NI is the number of inner iterations. The second method
uses Conjugate Gradient (CG). CG is a fast way to ap-
proximate the solution of a system of linear equations with
a symmetric coefficient matrix. The efficiency of CG de-
pends on the efficiency of the matrix–vector multiplication
between the coefficient matrix and a vector. In my meth-
ods the feature vector specific update is done by adding a
dyadic sum to the common statistics. This allows the mul-
tiplication to be done in K2 + N+

j K time for the jth fea-
ture vector. The complexity of one epoch can be reduced
to O(ND|O|NIN

+K +
∑ND

i=1 SiK
2NI), that is linear in the

number of features for the range of practical K values. CG
approximates the ALS solution and yields the exact solution
if the number of inner iterations equals to K.

Experimentation showed that ALS-CD and ALS-CG per-
forms similarly to ALS in terms of recommendation accu-
racy. ALS-CD was found to be unstable with N-way com-
ponents in the model if the number of features is high and
one of the interacting dimensions is small. The speed up
achieved by ALS-CG and ALS-CD is significant: for the
commonly used K = 80 the speed up to ALS is ∼ 3.5 and
∼ 1.3 respectively; for K = 200 it increases to ∼ 10.6 and
∼ 2.9. Figure 1 shows the scaling of ALS, ALS-CG and
ALS-CD with the number of features.

Overall, ALS-CG seems to be the better of the two ap-
proximation methods, due to its stability, speed, better ap-
proximation of ALS and other properties.

4. CONCLUSION & FUTURE WORK
My research is heavily influenced by practical considera-

tions. It focuses on the implicit feedback problem and tack-
les it using context-awareness and factorization. The iTALS
and iTALSx algorithms solve this task efficiently. These
algorithms use different preference models and are better
for different datasets. The preference modeling has been
unjustly neglected in recommender related research. There-
fore I created GFF, a single flexible algorithm that takes the
preference model as an input and computes the latent fea-
ture matrices accordingly. Novel models were examined for
a 4 dimensional context-aware problem using GFF. Novel
models outperformed traditional ones and the interaction
model performs well generally. Scalability is another impor-
tant aspect in practice, therefore I proposed two solutions
that enable the usage of high factor models for the implicit
context-aware task. The ALS-CG method scales linearly in
the number of features in practice that results in significant
speed up compared to the basic ALS.

In future research I aim to add an automatic model learn-
ing feature to GFF. While the flexibility of GFF is a great
asset for finding new models, the users of the framework
may be overwhelmed by the possible preference models, es-
pecially with novel context dimensions. Although the intu-
itively sound interaction model is a good starting point, it
may not be the best model for all context-aware problems.
Therefore it would be useful if GFF could propose a good
model for any context-aware recommendation problems.
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