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ABSTRACT
Deep learning is now an integral part of recommender systems,
but the research is still in its early phase. New research topics pop
up frequently and established topics are extended in new, interest-
ing directions. DLRS 2018 is a venue for pioneering work in the
intersection of deep learning and recommender systems research.
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1 INTRODUCTION
DLRS 2018 is the third instance in the Deep Learning for Recom-
mender Systems workshop series [8, 11]. As the acceptance of deep
learning changes within the recommender systems community, so
does the role of the DLRS workshop. The goal of the first DLRS
was to popularize the idea of using deep learning technology in
recommender systems, as research in this topic was few and far
between before 2016. The second workshop’s goal was to further
strengthen the acceptance of this idea. While in 2017 deep learn-
ing was already part of the main conference, DLRS 2017 gave the
additional needed exposure to the topic, including novel research
directions and domains within the field.
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The main conference in 2018 received a record number of deep
learning related submissions. This resulted in DLRS not breaking
the record of 2017 in the number of submissions received, as it is
now similar to what it was in 2016, which still implies massive
interest. The topic is getting more and more integrated into the
main conference, which is the original goal of the DLRS series.

By 2018, using deep learning in recommender systems became
well accepted. Even then, we are still in the early days of the re-
search, since the resurgence of using neural networks to solve
recommendation tasks is only a few years old. There are many
unexplored directions and untapped potential in deep learning for
the RecSys community. This includes both (1) revisiting domains
that were considered hard before deep learning was available as a
tool and (2) looking at recent advances in deep learning research
and using them for making recommender systems better. Therefore
the main role of DLRS 2018 is to provide a venue and exposure
to pioneering work as well as for papers in recently established
research areas within the field.

DLRS 2018 builds upon the positively received traits of previous
DLRS workshops. DLRS 2018 is a fast paced workshop with a focus
on high quality paper presentations and keynotes. We welcome
original research using deep learning technology for solving recom-
mender systems related problems. The workshop centers around
the use of Deep Learning technology in Recommender Systems and
algorithms.

2 PROGRESS IN THE FIELD
Last year we identified four main research topics that have been
established within the field during 2015-2017. These topics are
learning item representations [4, 18]; feature extraction from hetero-
geneous data including audio [17], images [5] and text [1]; deep
collaborative filtering [19, 21]; session-based recommendations with
recurrent neural networks (RNNs) [6, 7]; and of course the applica-
tion of the aforementioned in live recommenders e.g. [2].

Since then, these research topics have been extended in many
different directions. E.g. session-based RNN recommenders were
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extended to be context-aware by [16]; to handle information across
user sessions [15]; to predict intent from browsing data using
seq2seq models and attention [13]. Some papers transcend the
categorization and combine elements from different research lines.
E.g. [14] extends item representation learning by also using feature
extraction techniques.

New research topics have also started emerging recently:
Deep generative models, such as Variational Autoencoders

(VAE) [10] and Generative Adversarial Networks (GAN) [3] have
been one of the most promising additions to deep learning in recent
years. Lately, recommender systems researchers also started using
these models. This research has been pioneered by IRGAN [20] and
variational autoencoders for collaborative filtering (CF-VAE) [12].

IRGAN unifies of the generative and discriminative approach in
informartion retrieval by setting up a GAN like framework. The
generator selects relevant documents from a predefined set, condi-
tioned on relevance information and the query. No new items are
generated, which is a key difference, compared to the original GAN.
The discriminator distinguishes generated and real documents. By
competing, the generator acts as an adaptive negative sampler for
the discriminative model. The framework can be used for different
tasks, including recommendation.

CF-VAE replaces traditional (deterministic) autoencoders in rec-
ommender models with variational autoencoders. Thus the encoder
captures the distribution of the code and the decoder remaps a sam-
ple from this distribution. To adapt to the domain, the decoder uses
multinomial likelihood. Variational autoencoders can be also used
for other tasks within the recommender systems domain, such as
slate recommendation. [9]

Deep reinforcement learning is a promising direction for on-
line recommender systems. It is hard to infer user goals and intent
from static snapshots of data. While session-based recommendation
are adaptive to a degree as they change their predictions when the
user’s session changes, they are also limited by focusing on a sin-
gle aspect of the sessions (e.g. next click prediction), even though
different user goals would require different approaches (e.g. next
click prediction can be appropriate if the user browses, but not so
much if he is looking for a specific item). Deep reinforcement learn-
ing can learn highly adaptive policies that can solve this problem.
Reinforcement learning also enables optimization for long-term
online KPIs (e.g. revenue) and sparse rewards (e.g. purchase events).
There has been some research in this direction, but at the moment
proposed methods haven’t been evaluated in a proper way. Evalua-
tion seems to be one of the most significant problems to be solved,
because due to their nature reinforcement learning algorithms can
not be evaluated in an offline manner.

3 SUMMARY
Deep learning is now an integral part of the toolbox of researchers
of recommender systems and algorithms, and it is widely accepted
by the RecSys community. The field has a few already established
research lines and many other up and coming interesting directions,
such as using generative models or reinforcement learning. Yet, the
overall research is still in its early years, so rapid progress is to
be expected as researchers work on finding the best techniques
suitable for RecSys problems. DLRS 2018 aims to give exposure to

pioneering work in the intersection of deep learning and recom-
mender systems and to bring together researchers from the deep
learning and recommender systems communities.
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