
Deep Learning for Recommender Systems

Alexandros Karatzoglou (Scientific Director @ Telefonica Research)
alexk@tid.es, @alexk_z

Balázs Hidasi (Head of Research @ Gravity R&D)
balazs.hidasi@gravityrd.com, @balazshidasi

RecSys’17, 29 August 2017, Como



Why Deep Learning?

ImageNet challenge error rates (red line = human performance)

http://www.slideshare.net/nervanasys/sd-meetup-12215


Why Deep Learning?



Complex Architectures 



Neural Networks are Universal Function 
Approximators 



Inspiration for Neural Learning



Neural Model



Neuron a.k.a. Unit



Feedforward Multilayered Network



Learning



Stochastic Gradient Descent

• Generalization of (Stochastic) Gradient Descent



Stochastic Gradient Descent



Backpropagation



Backpropagation

• Does not work well in plain a
normal” multilayer deep network

• Vanishing Gradients

• Slow Learning

• SVM’s easier to train

• 2nd Neural Winter



Modern Deep Networks

• Ingredients:

• Rectified Linear Activation 
function a.k.a. ReLu



Modern Deep Networks

• Ingredients:

• Dropout:  



Modern Deep Networks

• Ingredients:

• Mini-batches:

– Stochastic Gradient Descent

– Compute gradient over many (50 -100) data points 
(minibatch) and update.  



Modern Deep Networks

• Ingredients:

• Softmax output:  



Modern Deep Networks

• Ingredients:

• Categorical cross-entropy loss:  



Modern Deep Networks

• Ingredients:

• Batch normalization:  



Modern Feedforward Networks

• Ingredients:

• Adagrad a.k.a. adaptive learning rates



• Feature extraction directly from the content
• Image, text, audio, etc.
• Instead of metadata
• For hybrid algorithms

• Heterogenous data handled easily

• Dynamic/Sequential behaviour modeling with RNNs

• More accurate representation learning of users and items
• Natural extension of CF & more

• RecSys is a complex domain
• Deep learning worked well in other complex domains
• Worth a try

Deep Learning for RecSys



• As of 2017 summer, main topics:
• Learning item embeddings

• Deep collaborative filtering

• Feature extraction directly from content

• Session-based recommendations with RNN

• And their combinations

Research directions in DL-RecSys



• Start simple
• Add improvements later

• Optimize code
• GPU/CPU optimizations may differ

• Scalability is key

• Opensource code

• Experiment (also) on public datasets

• Don’t use very small datasets

• Don’t work on irrelevant tasks, e.g. rating prediction

Best practices



Item embeddings & 2vec models



Embeddings

• Embedding: a (learned) real value vector 
representing an entity
– Also known as:

• Latent feature vector

• (Latent) representation

– Similar entities’ embeddings are similar

• Use in recommenders:
– Initialization of item representation in more advanced 

algorithms

– Item-to-item recommendations



Matrix factorization as learning 
embeddings

• MF: user & item embedding learning
– Similar feature vectors

• Two items are similar
• Two users are similar
• User prefers item

– MF representation as a simplictic neural 
network
• Input: one-hot encoded user ID
• Input to hidden weights: user feature 

matrix
• Hidden layer: user feature vector
• Hidden to output weights: item feature 

matrix
• Output: preference (of the user) over the

items
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Word2Vec

• [Mikolov et. al, 2013a]
• Representation learning of words
• Shallow model
• Data: (target) word + context pairs

– Sliding window on the document
– Context = words near the target

• In sliding window
• 1-5 words in both directions

• Two models
– Continous Bag of Words (CBOW)
– Skip-gram



Word2Vec - CBOW

• Continuous Bag of Words
• Maximalizes the probability of the target word given the 

context
• Model

– Input: one-hot encoded words
– Input to hidden weights

• Embedding matrix of words

– Hidden layer
• Sum of the embeddings of the words in the context

– Hidden to output weights
– Softmax transformation

• Smooth approximation of the max operator
• Highlights the highest value

• 𝑠𝑖 =
𝑒𝑟𝑖

σ𝑗=1
𝑁 𝑒

𝑟𝑗
, (𝑟𝑗: scores)

– Output: likelihood of words of the corpus given the context

• Embeddings are taken from the input to hidden matrix
– Hidden to output matrix also has item representations (but not 

used)
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Word2Vec – Skip-gram

• Maximalizes the probability of the 
context, given the target word

• Model
– Input: one-hot encoded word
– Input to hidden matrix: embeddings
– Hidden state

• Item embedding of target

– Softmax transformation
– Output: likelihood of context words 

(given the input word)

• Reported to be more accurate
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Geometry of the Embedding Space

King - Man + Woman = Queen 



Paragraph2vec, doc2vec

• [Le & Mikolov, 2014]

• Learns representation of 
paragraph/document

• Based on CBOW model

• Paragraph/document 
embedding added to the 
model as global context
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...2vec for Recommendations

Replace words with items in a session/user profile

E E E E
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Prod2Vec

[Grbovic et. al, 2015]

pro2vec skip-gram model on products  



Bagged Prod2Vec

[Grbovic et. al, 2015]

bagged-prod2vec model updates



User-Prod2Vec

[Grbovic et. al, 2015]

User embeddings for user to product predictions



Utilizing more information

• Meta-Prod2vec [Vasile et. al, 2016]
– Based on the prod2vec model
– Uses item metadata

• Embedded metadata
• Added to both the input and the context

– Losses between: target/context item/metadata
• Final loss is the combination of 5 of these losses

• Content2vec [Nedelec et. al, 2017]
– Separate modules for multimodel information

• CF: Prod2vec
• Image: AlexNet (a type of CNN)
• Text: Word2Vec and TextCNN

– Learns pairwise similarities
• Likelihood of two items being bought together
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Deep Collaborative Filtering



CF with Neural Networks

• Natural application area
• Some exploration during the Netflix prize
• E.g.: NSVD1 [Paterek, 2007]

– Asymmetric MF
– The model:

• Input: sparse vector of interactions
– Item-NSVD1: ratings given for the item by users

» Alternatively: metadata of the item
– User-NSVD1: ratings given by the user

• Input to hidden weights: „secondary” feature vectors
• Hidden layer: item/user feature vector
• Hidden to output weights: user/item feature vectors
• Output:

– Item-NSVD1: predicted ratings on the item by all users
– User-NSVD1: predicted ratings of the user on all items

– Training with SGD
– Implicit counterpart by [Pilászy et. al, 2009]
– No non-linarities in the model

Ratings of the user

User features

Predicted ratings

Secondary feature 
vectors

Item feature 
vectors



Restricted Boltzmann Machines (RBM) for 
recommendation

• RBM
– Generative stochastic neural network
– Visible & hidden units connected by (symmetric) weights

• Stochastic binary units
• Activation probabilities: 

– 𝑝 ℎ𝑗 = 1 𝑣 = 𝜎 𝑏𝑗
ℎ + σ𝑖=1

𝑚 𝑤𝑖,𝑗𝑣𝑖

– 𝑝 𝑣𝑖 = 1 ℎ = 𝜎 𝑏𝑖
𝑣 + σ𝑗=1

𝑛 𝑤𝑖,𝑗ℎ𝑗

– Training
• Set visible units based on data
• Sample hidden units
• Sample visible units
• Modify weights to approach the configuration of visible units to the data

• In recommenders [Salakhutdinov et. al, 2007]
– Visible units: ratings on the movie

• Softmax unit
– Vector of length 5 (for each rating value) in each unit
– Ratings are one-hot encoded

• Units correnponding to users who not rated the movie are ignored

– Hidden binary units
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Deep Boltzmann Machines (DBM)

• Layer-wise training
– Train weights between 

visible and hidden units in 
an RBM

– Add a new layer of hidden 
units

– Train weights connecting 
the new layer to the 
network
• All other weights (e.g. 

visible-hidden weights) are 
fixed
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Autoencoders

• Autoencoder
– One hidden layer
– Same number of input and output units
– Try to reconstruct the input on the output
– Hidden layer: compressed representation of the data

• Constraining the model: improve generalization
– Sparse autoencoders

• Activations of units are limited
• Activation penalty
• Requires the whole train set to compute

– Denoising autoencoders [Vincent et. al, 2008]
• Corrupt the input (e.g. set random values to zero)
• Restore the original on the output

• Deep version
– Stacked autoencoders
– Layerwise training (historically)
– End-to-end training (more recently)

Data

Corrupted input

Hidden layer

Reconstructed output

Data



Autoencoders for recommendation

• Reconstruct corrupted user interaction vectors

– CDL [Wang et. al, 2015]

Collaborative Deep Learning

Uses Bayesian stacked denoising autoencoders

Uses tags/metadata instead of the item ID



Autoencoders for recommendation

• Reconstruct corrupted user interaction vectors

– CDAE [Wu et. al, 2016]

Collaborative Denoising Auto-Encoder

Additional user node on the

input and bias node beside

the hidden layer



Recurrent autoencoder

• CRAE [Wang et. al, 2016]

– Collaborative Recurrent Autoencoder

– Encodes text (e.g. movie plot, review)

– Autoencoding with RNNs

• Encoder-decoder architecture

• The input is corrupted by replacing words with a 
deisgnated BLANK token

– CDL model + text encoding simultaneously

• Joint learning



DeepCF methods

• MV-DNN [Elkahky et. al, 2015]
– Multi-domain recommender

– Separate feedforward networks for user and items per domain
(D+1 networks)

• Features first are embedded

• Run through several layers



DeepCF methods

• TDSSM [Song et. al, 2016]
• Temporal Deep Semantic Structured Model

• Similar to MV-DNN

• User features are the combination of a static and a temporal part

• The time dependent part is modeled by an RNN



DeepCF methods

• Coevolving features [Dai et. al, 2016]
• Users’ taste and items’ audiences change over time

• User/item features depend on time and are composed of

• Time drift vector

• Self evolution

• Co-evolution with items/users

• Interaction vector

Feature vectors are learned by RNNs



DeepCF methods

• Product Neural Network (PNN) [Qu et. al, 2016]
– For CTR estimation
– Embed features
– Pairwise layer: all pairwise combination

of embedded features 
• Like Factorization Machines
• Outer/inner product of feature vectors or both

– Several fully connected layers

• CF-NADE [Zheng et. al, 2016]
– Neural Autoregressive Collaborative Filtering
– User events → preference (0/1) + confidence (based on occurence)
– Reconstructs some of the user events based on others (not the full set)

• Random ordering of user events
• Reconstruct the preference i, based on preferences and confidences up to i-1

– Loss is weighted by confidences



Applications: app recommendations

• Wide & Deep Learning [Cheng et. al, 2016]
• Ranking of results matching a query
• Combination of two models

– Deep neural network
• On embedded item features
• „Generalization”

– Linear model
• On embedded item features
• And cross product of item features
• „Memorization”

– Joint training
– Logistic loss

• Improved online performance
– +2.9% deep over wide
– +3.9% deep+wide over wide



Applications: video recommendations

• YouTube Recommender [Covington et. al, 2016]
– Two networks
– Candidate generation

• Recommendations as classification
– Items clicked / not clicked when were recommended

• Feedforward network on many features
– Average watch embedding vector of user (last few items)
– Average search embedding vector of user (last few searches)
– User attributes
– Geographic embedding

• Negative item sampling + softmax

– Reranking
• More features

– Actual video embedding
– Average video embedding of watched videos
– Language information
– Time since last watch
– Etc.

• Weighted logistic regression on the top of the network
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Feature Extraction from Content



Content features in recommenders

• Hybrid CF+CBF systems
– Interaction data + metadata

• Model based hybrid solutions
– Initiliazing

• Obtain item representation based on metadata
• Use this representation as initial item features

– Regularizing
• Obtain metadata based representations
• The interaction based representation should be close to the metadata based
• Add regularizing term to loss of this difference

– Joining
• Obtain metadata based representations
• Have the item feature vector be a concatenation

– Fixed metadata based part
– Learned interaction based part



Feature extraction from content

• Deep learning is capable of direct feature extraction
– Work with content directly
– Instead (or beside) metadata

• Images
– E.g.: product pictures, video thumbnails/frames
– Extraction: convolutional networks
– Applications (e.g.):

• Fashion
• Video

• Text
– E.g.: product description, content of the product, reviews
– Extraction

• RNNs
• 1D convolution networks
• Weighted word embeddings
• Paragraph vectors

– Applications (e.g.):
• News
• Books
• Publications

• Music/audio
– Extraction: convolutional networks (or RNNs)



Convolutional Neural Networks (CNN)

• Speciality of images
– Huge amount of information

• 3 channels (RGB)

• Lots of pixels

• Number of weights required to fully connect a 320x240 
image to 2048 hidden units:
– 3*320*240*2048 = 471,859,200

– Locality
• Objects’ presence are independent of their location or 

orientation

• Objects are spatially restricted



Convolutional Neural Networks (CNN)

• Image input
– 3D tensor

• Width
• Height
• Channels (R,G,B)

• Text/sequence inputs
– Matrix
– of one-hot encoded entities

• Inputs must be of same size
– Padding

• (Classic) Convolutional Nets
– Convolution layers
– Pooling layers
– Fully connected layers



Convolutional Neural Networks (CNN)

• Convolutional layer (2D)
– Filter

• Learnable weights, arranged in a small tensor (e.g. 3x3xD)
– The tensor’s depth equals to the depth of the input

• Recognizes certain patterns on the image

– Convolution with a filter
• Apply the filter on regions of the image

– 𝑦𝑎,𝑏 = 𝑓 σ𝑖,𝑗,𝑘𝑤𝑖,𝑗,𝑘𝐼𝑖+𝑎−1,𝑗+𝑏−1,𝑘
» Filters are applied over all channels (depth of the input tensor)
» Activation function is usually some kind of ReLU

– Start from the upper left corner
– Move left by one and apply again
– Once reaching the end, go back and shift down by one

• Result: a 2D map of activations, high at places corresponding to the pattern recognized by the filter

– Convolution layer: multiple filters of the same size
• Input size (𝑊1 ×𝑊2 × 𝐷)
• Filter size (𝐹 × 𝐹 × 𝐷)
• Stride (shift value) (𝑆)
• Number of filters (𝑁)

• Output size: 
𝑊1−𝐹

𝑆
+ 1 ×

𝑊2−𝐹

𝑆
+ 1 × 𝑁

• Number of weights: 𝐹 × 𝐹 × 𝐷 × 𝑁

– Another way to look at it: 

• Hidden neurons organized in a 
𝑊1−𝐹

𝑆
+ 1 ×

𝑊2−𝐹

𝑆
+ 1 × 𝑁 tensor

• Weights a shared between neurons with the same depth
• A neuron processe an 𝐹 × 𝐹 × 𝐷 region of the input
• Neighboring neurons process regions shifted by the stride value

1 3 8 0

0 7 2 1

2 5 5 1

4 2 3 0

-1 -2 -1

-2 12 -2

-1 -2 -1

48 -27

19 28



Convolutional Neural Networks (CNN)

• Pooling layer
– Mean pooling: replace an 𝑅 × 𝑅 region with the mean of the values
– Max pooling: replace an 𝑅 × 𝑅 region with the maximum of the values
– Used to quickly reduce the size
– Cheap, but very aggressive operator

• Avoid when possible
• Often needed, because convolutions don’t decrease the number of inputs fast enough

– Input size: 𝑊1 ×𝑊2 × 𝑁

– Output size: 
𝑊1

𝑅
×

𝑊2

𝑅
× 𝑁

• Fully connected layers
– Final few layers
– Each hidden neuron is connected with every neuron in the next layer

• Residual connections (improvement) [He et. al, 2016]
– Very deep networks degrade performance
– Hard to find the proper mappings
– Reformulation of the problem: F(x) → F(x)+x

Layer

Layer

+

𝑥

𝐹 𝑥 + 𝑥

𝐹(𝑥)



Convolutional Neural Networks (CNN)

• Some examples

• GoogLeNet [Szegedy et. al, 2015]

• Inception-v3 model [Szegedy et. al, 2016]

• ResNet (up to 200+ layers) [He et. al, 2016]



Images in recommenders

• [McAuley et. Al, 2015]
– Learns a parameterized distance metric over visual 

features
• Visual features are extracted from a pretrained CNN
• Distance function: Eucledian distance of „embedded” visual 

features
– Embedding here: multiplication with a weight matrix to reduce 

the number of dimensions

– Personalized distance
• Reweights the distance with a user specific weight vector

– Training: maximizing likelihood of an existing 
relationship with the target item 
• Over uniformly sampled negative items



Images in recommenders

• Visual BPR [He & McAuley, 2016]
– Model composed of

• Bias terms
• MF model
• Visual part

– Pretrained CNN features
– Dimension reduction through „embedding”
– The product of this visual item feature and a learned user feature vector is used in the 

model

• Visual bias
– Product of the pretrained CNN features and a global bias vector over its features

– BPR loss
– Tested on clothing datasets (9-25% improvement)



Music representations

• [Oord et. al, 2013]
– Extends iALS/WMF with audio 

features
• To overcome cold-start

– Music feature extraction
• Time-frequency representation
• Applied CNN on 3 second 

samples
• Latent factor of the clip: average 

predictions on consecutive 
windows of the clip

– Integration with MF
• (a) Minimize distance between 

music features and the MF’s 
feature vectors

• (b) Replace the item features 
with the music features 
(minimize original loss)



Textual information improving 
recommendations

• [Bansal et. al, 2016]
– Paper recommendation
– Item representation

• Text representation
– Two layer GRU (RNN): bidirectional layer followed by a unidirectional layer
– Representation is created by pooling over the hidden states of the sequence

• ID based representation (item feature vector)
• Final representation: ID + text added

– Multi-task learning
• Predict both user scores
• And likelihood of tags

– End-to-end training
• All parameters are trained simultaneously (no pretraining)
• Loss

– User scores: weighted MSE (like in iALS)
– Tags: weighted log likelihood (unobserved tags are downweighted)
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Session-based Recommendations with 
RNNs



Recurrent Neural Networks

• Input: sequential information ( 𝑥𝑡 𝑡=1
𝑇 )

• Hidden state (ℎ𝑡): 

– representation of the sequence so far

– influenced by every element of the sequence up 
to t

• ℎ𝑡 = 𝑓 𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏



RNN-based machine learning

• Sequence to value
– Encoding, labeling
– E.g.: time series classification

• Value to sequence
– Decoding, generation
– E.g.: sequence generation

• Sequence to sequence
– Simultaneous

• E.g.: next-click prediction

– Encoder-decoder architecture
• E.g.: machine translation
• Two RNNs (encoder & decoder)

– Encoder produces a vector describing the sequence
» Last hidden state
» Combination of hidden states (e.g. mean pooling)
» Learned combination of hidden states

– Decoder receives the summary and generates a new sequence
» The generated symbol is usually fed back to the decoder
» The summary vector can be used to initialize the decoder
» Or can be given as a global context

• Attention mechanism (optionally)
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Exploding/Vanishing gradients

• ℎ𝑡 = 𝑓 𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏
• Gradient of ℎ𝑡 wrt. 𝑥1

– Simplification: linear activations
• In reality: bounded

–
𝜕ℎ𝑡

𝜕𝑥1
=

𝜕ℎ𝑡

𝜕ℎ𝑡−1

𝜕ℎ𝑡−1

𝜕ℎ𝑡−2
⋯

𝜕ℎ2

𝜕ℎ1

𝜕ℎ1

𝜕𝑥1
= 𝑈𝑡−1𝑊

• 𝑈 2 < 1→ vanishing gradients
– The effect of values further in the past is neglected
– The network forgets

• 𝑈 2 > 1→ exploding gradients
– Gradients become very large on longer sequences
– The network becomes unstable



Handling exploding gradients

• Gradient clipping
– If the gradient is larger than a threshold, scale it back to 

the threshold
– Updates are not accurate
– Vanishing gradients are not solved

• Enforce 𝑈 2 = 1
– Unitary RNN
– Unable to forget

• Gated networks
– Long-Short Term Memory (LSTM)
– Gated Recurrent Unit (GRU)
– (and a some other variants)



Long-Short Term Memory (LSTM)

• [Hochreiter & Schmidhuber, 1999]
• Instead of rewriting the hidden state during update, 

add a delta
– 𝑠𝑡 = 𝑠𝑡−1 + Δ𝑠𝑡
– Keeps the contribution of earlier inputs relevant

• Information flow is controlled by gates
– Gates depend on input and the hidden state
– Between 0 and 1
– Forget gate (f): 0/1 → reset/keep hidden state
– Input gate (i): 0/1 → don’t/do consider the contribution of 

the input
– Output gate (o): how much of the memory is written to the 

hidden state

• Hidden state is separated into two (read before you 
write)
– Memory cell (c): internal state of the LSTM cell
– Hidden state (h): influences gates, updated from the 

memory cell

𝑓𝑡 = 𝜎 𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓
𝑖𝑡 = 𝜎 𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖
𝑜𝑡 = 𝜎 𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜

ǁ𝑐𝑡 = tanh 𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏
𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ ǁ𝑐𝑡
ℎ𝑡 = 𝑜𝑡 ∘ tanh 𝑐𝑡

𝐶

ℎ

IN

OUT

+

+

i

f

o



Gated Recurrent Unit (GRU)

• [Cho et. al, 2014]

• Simplified information flow
– Single hidden state

– Input and forget gate merged →
update gate (z)

– No output gate

– Reset gate (r) to break 
information flow from previous 
hidden state

• Similar performance to LSTM ℎ
r

IN

OUT

z

+

𝑧𝑡 = 𝜎 𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧
𝑟𝑡 = 𝜎 𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟

෨ℎ𝑡 = tanh 𝑊𝑥𝑡 + 𝑟𝑡 ∘ 𝑈ℎ𝑡−1 + 𝑏

ℎ𝑡 = 𝑧𝑡 ∘ ℎ𝑡−1 + 1 − 𝑧𝑡 ∘ ෨ℎ𝑡



Session-based recommendations

• Sequence of events
– User identification problem
– Disjoint sessions (instead of consistent user history)

• Tasks
– Next click prediction
– Predicting intent

• Classic algorithms can’t cope with it well
– Item-to-item recommendations as approximation in 

live systems

• Area revitalized by RNNs



GRU4Rec (1/3)

• [Hidasi et. al, 2015]
• Network structure

– Input: one hot encoded item ID
– Optional embedding layer
– GRU layer(s)
– Output: scores over all items
– Target: the next item in the session

• Adapting GRU to session-based 
recommendations
– Sessions of (very) different length & lots of short 

sessions: session-parallel mini-batching
– Lots of items (inputs, outputs): sampling on the 

output
– The goal is ranking: listwise loss functions on 

pointwise/pairwise scores

GRU layer

One-hot vector

Weighted output

Scores on items

f()

One-hot vector

ItemID (next)

ItemID



GRU4Rec (2/3)

• Session-parallel mini-batches
– Mini-batch is defined over sessions
– Update with one step BPTT

• Lots of sessions are very short
• 2D mini-batching, updating on longer 

sequences (with or without padding) didn’t 
improve accuracy

• Output sampling
– Computing scores for all items (100K – 1M) in 

every step is slow
– One positive item (target) + several samples
– Fast solution: scores on mini-batch targets

• Items of the other mini-batch are negative 
samples for the current mini-batch

• Loss functions
– Cross-entropy + softmax
– Average of BPR scores
– TOP1 score (average of ranking error + 

regularization over score values)
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GRU4Rec (3/3)

• Observations
– Similar accuracy with/without embedding
– Multiple layers rarely help

• Sometimes slight improvement with 2 layers
• Sessions span over short time, no need for multiple time scales

– Quick conversion: only small changes after 5-10 epochs
– Upper bound for model capacity

• No improvement when adding additional units after a certain 
threshold

• This threshold can be lowered with some techniques

• Results
– 20-30% improvement over item-to-item recommendations



Improving GRU4Rec

• Recall@20 on RSC15 by GRU4Rec: 0.6069 (100 units), 0.6322 (1000 units)

• Data augmentation [Tan et. al, 2016]

– Generate additional sessions by taking every possible sequence starting from the end of a session

– Randomly remove items from these sequences

– Long training times

– Recall@20 on RSC15 (using the full training set for training): ~0.685 (100 units)

• Bayesian version (ReLeVar) [Chatzis et. al, 2017]
– Bayesian formulation of the model

– Basically additional regularization by adding random noise during sampling

– Recall@20 on RSC15: 0.6507 (1500 units)

• New losses and additional sampling [Hidasi & Karatzoglou, 2017]

– Use additional samples beside minibatch samples

– Design better loss functions

• BPRmax = − log σ𝑗=1
𝑁𝑆 𝑠𝑗𝜎 𝑟𝑖 − 𝑟𝑗 + 𝜆σ𝑗=1

𝑁𝑆 𝑟𝑗
2

– Recall@20 on RSC15: 0.7119 (100 units)



Extensions

• Multi-modal information (p-RNN model) [Hidasi et. al, 2016]
– Use image and description besides the item ID
– One RNN per information source
– Hidden states concatenated
– Alternating training

• Item metadata [Twardowski, 2016]
– Embed item metadata
– Merge with the hidden layer of the RNN (session representation)
– Predict compatibility using feedforward layers

• Contextualization [Smirnova & Vasile, 2017]
– Merging both current and next context
– Current context on the input module
– Next context on the output module
– The RNN cell is redefined to learn context-aware transitions

• Personalizing by inter-session modeling
– Hierarchical RNNs [Quadrana et. al, 2017], [Ruocco et. al, 2017]

• One RNN works within the session (next click prediction)
• The other RNN predicts the transition between the sessions of the user
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Conclusions

• Deep Learning is now in RecSys
• Huge potential, but lot to do

– E.g. Explore more advanced DL techniques 

• Current research directions
– Item embeddings
– Deep collaborative filtering
– Feature extraction from content
– Session-based recommendations with RNNs

• Scalability should be kept in mind
• Don’t fall for the hype BUT don’t disregard the 

achievements of DL and its potential for RecSys



Thank you!
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