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IMPLICIT FEEDBACK

� User preference not coded explicitely in data

� E.g. purchase history

� Presence � preference assumed

� Absence � ???

� Binary „preference” matrix

� Zeroes should be considered

� Optimize for

� Weighted RMSE

� Partial ordering (ranking)



CONTEXT

� Can mean anything

� Here: event context

� User U has an event

� on Item I

� while the context is C

� E.g.: time, weather, mood of U, freshness of I, etc.

� In the experiments:

� Seasonality (time of the day or time of the week)

� Time period: week / day



FACTORIZATION I

� Preference data can be organized into matrix

� Size of dimensions high

� Data is sparse

� Approximate this matrix by the product of two low 
rank matrices

� Each item and user has a feature vector

� Predicted preference is the scalar product of the 
appropriate vectors

�

� Here we optimize for wRMSE (implicit case)

� Learning features with ALS
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FACTORIZATION II.

� Context introduced � additional context dimension

� Matrix � tensor (table of records)

� Models for preference prediction:

� Elementwise product model

� Weighted scalar product

�

� Pairwise model

� Context dependent user/item bias

�
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ITEM-TO-ITEM RECOMMENDATIONS

� Items similar to the current item

� E.g.: user cold start, related items, etc.

� Approaches: association rules, similarity between 
item consumption vectors, etc.

� In the factorization framework:

� Similarity between the feature vectors

� Scalar product:

� Cosine similarity:
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SCOPE OF THIS PROJECT

� Examination wether item similarities can be 
improved

� using context-aware learning or prediction

� compared to the basic feature based solution

� Motivation:

� If factorization models are used anyways, it would be 
good to use them for I2I recommendations as well

� Out of scope:

� Comparision with other approaches (e.g. association
rules)



CONTEXT-AWARE SIMILARITIES: LEVEL1

� The form of computing similarity remains

�

� Similarity is NOT CA

� Context-aware learning is used

� Assumption: item models will be more accurate

� Reasons: during the learning context is modelled separately

� Elementwise product model

� Context related effects coded in the context feature vector

� Pairwise model

� Context related biases removed
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CONTEXT-AWARE SIMILARITIES: LEVEL2

� Incorporating the context features

� Elementwise product model

� Similarities reweighted by the context feature

� Assumption: will be sensitive to the quality of the
context

�

� Pairwise model

� Context dependent promotions/demotions for the
participating items

� Assumption: minor improvements to the basic similarity

�
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CONTEXT-AWARE SIMILARITIES: LEVEL2 
NORMALIZATION

� Normalization of context vector

� Only for cosine similarity

� Elementwise product model:

� Makes no difference in the ordering

� Recommendation in a given context to a given user

� Pairwise model

� Might affect results

� Controls the importance of item promotions/demotions
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EXPERIMENTS - SETUP

� Four implicit dataset

� LastFM 1K – music

� TV1, TV2 – IPTV

� Grocery – online grocery shopping

� Context: seasonality

� Both with manually and automatically determined time
bands

� Evaluation: recommend similar items to the users’ 
previous item

� Recall@20

� MAP@20

� Coverage@20



EXPERIMENTS - RESULTS

� From left to right: L1 elementwise, L1 pairwise, L2 elementwise, L2 pairwise, L2 pairwise (norm)
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EXPERIMENTS - CONCLUSION

� Context awareness generally helps

� Impromevent greatly depends on method and 
context quality

� All but the elementwise level2 method:

� Minor improvements

� Tolerant of context quality

� Elementwise product level2:

� Possibly huge improvements

� Or huge decrease in recommendations

� Depends on the context/problem



(POSSIBLE) FUTURE WORK

� Experimentation with different contexts

� Different similarity between feature vectors

� Predetermination wether context is useful for

� User bias

� Item bias

� Reweighting

� Predetermination of context quality

� Different evaluation methods

� E.g. recommend to session



THANKS FOR THE ATTENTION!

For more of my recommender systems related research visit my website: 
http://www.hidasi.eu


